In order to improve the machining accuracy and efficiency of the hole and sleeve parts, it is necessary to improve the overall grinding accuracy of the CNC (Computer Numerical Control) internal cylindrical compound grinding machine more accurately and efficiently. First of all, it is necessary to clarify the degree of influence of each error parameter on the grinding accuracy, and compensate each error according to the different degree of influence. In this paper, modeling calculation analysis is carried out for a certain type of CNC internal cylindrical compound grinding machine. Firstly, based on the theory of multi-body system dynamics, the topological structure of the CNC internal cylindrical compound grinder is established. According to the topological structure, the position, motion matrix and error matrix of the moving parts of the grinder are written. After data processing, the numerical control internal cylindrical compound grinder is calculated. Use this model to derivate each error parameter to obtain the sensitivity expression of each error parameter. After the actual structure parameters of the grinder are brought into the expression, the sensitivity coefficient of each error parameter can be determined by normalization treatment. The key error parameter with larger sensitivity coefficient is the key error parameter. Finally, several error parameters which have the greatest impact on the overall grinding accuracy of the grinder are obtained. This method provides the basis for the improvement of the grinding accuracy of the subsequent grinder, and creates conditions for the improvement of the machining accuracy of sleeve parts.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.