Identifying a set of influential nodes is an important topic in complex networks which plays a crucial role in many applications, such as market advertising, rumor controlling, and predicting valuable scientific publications. In regard to this, researchers have developed algorithms from simple degree methods to all kinds of sophisticated approaches. However, a more robust and practical algorithm is required for the task. In this paper, we propose the EnRenew algorithm aimed to identify a set of influential nodes via information entropy. Firstly, the information entropy of each node is calculated as initial spreading ability. Then, select the node with the largest information entropy and renovate its l-length reachable nodes' spreading ability by an attenuation factor, repeat this process until specific number of influential nodes are selected. Compared with the best state-of-the-art benchmark methods, the performance of proposed algorithm improved by 21.1%, 7.0%, 30.0%, 5.0%, 2.5%, and 9.0% in final affected scale on CEnew, Email, Hamster, Router, Condmat, and Amazon network, respectively, under the Susceptible-Infected-Recovered (SIR) simulation model. The proposed algorithm measures the importance of nodes based on information entropy and selects a group of important nodes through dynamic update strategy. The impressive results on the SIR simulation model shed light on new method of node mining in complex networks for information spreading and epidemic prevention.Entropy 2020, 22, 242 2 of 19 diffusion [9], and even detect essential proteins [10]. On the other hand, by removing some critical nodes, it can greatly reduce the connectivity of the network to restrain the outbreak of epidemics [11] or spreading of rumors [12].The ongoing COVID-19 epidemics is catching wide attention around the world. Every country is making enormous effort to control the virus spreading. By analyzing social networks, it would be easier for us to control epidemics spreading. In the last decades, propagation dynamics has always been an important research direction. Many mechanisms, such as epidemic spreading [13][14][15][16], rumor propagation [17,18], social sudden events spreading [19], and e-commercial advertisements, are all closely related to complex network dynamics. Early in 1760, Daniel Bernoulli studied smallpox vaccine by using ordinary differential equations, and gave the Bernoulli equations [20] , which is one of the earliest propagation dynamics models. Later, Hamer presented the mass-action principle [21,22] when studying the recurring epidemics of measles. A.G. McKendrick and W.O. Kermack formulated a famous modern mathematical epidemic model named the Susceptible-Infected-Recovered (SIR) compartmental model when studying the spreading pattern of the Black Death and the plague in 1906. SIR compartmental model successfully predicted the outbreak of several epidemics [23]. Harding et al. [24] followed the maximum entropy (MaxEnt) principle when simulating on the SIS model to study epidemics spreading on networks. Wang et ...
Recommender systems have become prosperous nowadays, designed to predict users’ potential interests in items by learning embeddings. Recent developments of the Graph Neural Networks (GNNs) also provide recommender systems with powerful backbones to learn embeddings from a user-item graph. However, only leveraging the user-item interactions suffers from the cold-start issue due to the difficulty in data collection. Hence, current endeavors propose fusing social information with user-item interactions to alleviate it, which is the social recommendation problem. Existing work employs GNNs to aggregate both social links and user-item interactions simultaneously. However, they all require centralized storage of the social links and item interactions of users, which leads to privacy concerns. Additionally, according to strict privacy protection under General Data Protection Regulation, centralized data storage may not be feasible in the future, urging a decentralized framework of social recommendation. As a result, we design a federated learning recommender system for the social recommendation task, which is rather challenging because of its heterogeneity, personalization, and privacy protection requirements. To this end, we devise a novel framework Fe drated So cial recommendation with G raph neural network ( FeSoG ). Firstly, FeSoG adopts relational attention and aggregation to handle heterogeneity. Secondly, FeSoG infers user embeddings using local data to retain personalization. Last but not least, the proposed model employs pseudo-labeling techniques with item sampling to protect the privacy and enhance training. Extensive experiments on three real-world datasets justify the effectiveness of FeSoG in completing social recommendation and privacy protection. We are the first work proposing a federated learning framework for social recommendation to the best of our knowledge.
Social recommendation aims to fuse social links with user-item interactions to alleviate the cold-start problem for rating prediction. Recent developments of Graph Neural Networks (GNNs) motivate endeavors to design GNN-based social recommendation frameworks to aggregate both social and user-item interaction information simultaneously. However, most existing methods neglect the social inconsistency problem, which intuitively suggests that social links are not necessarily consistent with the rating prediction process. Social inconsistency can be observed from both contextlevel and relation-level. Therefore, we intend to empower the GNN model with the ability to tackle the social inconsistency problem. We propose to sample consistent neighbors by relating sampling probability with consistency scores between neighbors. Besides, we employ the relation attention mechanism to assign consistent relations with high importance factors for aggregation. Experiments on two real-world datasets verify the model effectiveness.
Background:: Lectins are a diverse group of glycoproteins or glycoconjugate proteins that can be extracted from plants, invertebrates and higher animals. Cancerlectins, a kind of lectins, which play a key role in the process of tumor cells interacting with each other and are being employed as therapeutic agents. A full understanding of cancerlectins is significant because it provides a tool for the future direction of cancer therapy. Objective:: To develop an accurate and practically useful timesaving tool to identify cancerlectins. A novel sequence-based method is proposed along with a correlative webserver to access the proposed tool. Methods: Firstly, protein features were extracted in a newly feature building way termed, g-gap tripeptide composition. After which a proposed cascade linear discriminant analysis (Cascade LDA) is used to alleviate the high dimensional difficulties with the Analysis Of Variance (ANOVA) as a feature importance criterion. Finally, Support Vector Machine (SVM) is used as the classifier to identify cancerlectins. Results: The proposed method achieved an accuracy of 91.34% with sensitivity of 89.89%, specificity of 92.48% and an 0.8318 Mathew’s correlation coefficient based on only 13 fusion features in jackknife cross validation, the result of which is superior to other published methods in this domain. Conclusion:: In this study, a new method based only on primary structure of protein is proposed and experimental results show that it could be a promising tool to identify cancerlectins. An openaccess webserver is made available in this work to facilitate other related works.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.