A cross-sectional study investigated risk factors associated with choices to drink bottled water and tap water in rural Saskatchewan. Of 7,500 anonymous postal questionnaires mailed out, 2,065 responses were analyzed using generalized linear mixed models. Those who reported a water advisory (p < 0.001) or living in the area for ≤10 years (p = 0.01) were more likely to choose bottled water. Those who reported tap water was not safe to drink were more likely to choose bottled water, an effect greater for those who had no aesthetic complaints (p ≤ 0.001), while those with aesthetic complaints were more likely to choose bottled water if they believed the water was safe (p < 0.001). Respondents who treated their water and did not use a community supply were more likely to choose bottled water (p < 0.001), while those who did not treat their water were more likely to choose bottled water regardless of whether a community supply was used (p < 0.001). A similar pattern of risk factors was associated with a decreased likelihood of consuming tap water daily; however, the use of a community water supply was not significant. Understanding the factors involved in drinking water choices could inform public health education efforts regarding water management in rural areas.
Water-related health challenges on First Nations reserves in Canada have been previously documented. Our objective was to describe factors associated with self-reported health effects from tap water in 8 First Nations reserve communities in Saskatchewan, Canada. Community-based participatory approaches were used in designing and implementing cross-sectional household surveys. Individual, household, community, and contextual effects were considered in multilevel analysis. Negative health effects from tap water were reported by 28% of households (n = 579). Concerns about environmental factors affecting water quality (odds ratio [OR] = 3.4, 95% confidence interval [CI] = 1.8-6.7), rarely or never drinking tap water (OR = 2.9, 95% CI = 1.3-6.6), insufficient tap water (OR = 3.0, 95% CI = 1.4-6.3), paying for bottled water (OR = 3.2, 95% CI = 1.2-8.7), and dissatisfaction with tap water were associated with self-reported health effects (n = 393); however, the effect of dissatisfaction was modified by respondent age (P = .03). Quality and availability were associated with perceptions of health effects from drinking water, providing additional information on how ongoing concerns about drinking water influence self-reported health in some First Nations.
While Johne's disease (JD) is less common in beef than in dairy herds, consolidation is increasing transmission risk. Estimates of Mycobacterium avium spp. paratuberculosis (MAP) prevalence and test performance in cow-calf herds are needed to inform control programs. Objectives of this study included describing the prevalence of MAP in Canadian cow-calf herds and comparing the relative performance of a serum ELISA, pooled fecal PCR and individual fecal PCR using Bayesian latent class models, and to investigate factors associated with positive MAP tests. Blood and fecal samples (n = 3,171) were collected from 159 Canadian cow-calf herds. All samples were analyzed using serum ELISA and fecal PCR (pools of five samples) and a subset of 913 fecal samples were also tested with individual PCR. Based on latent class analysis, MAP prevalence was higher in eastern compared to western Canada for both animals {East, 3% [95% Credible Interval (CrI) 1–7%]; West, 1% [95% CrI 0.2–2%]} and herds [East, 15% (95% CrI 2–35%); West, 10% (95% CrI 1–26%), based on one or more positive results]. Sensitivity (Se) and specificity (Sp) for animal level individual PCR were 96% (95% CrI 80–100%) and 98% (95% CrI 96–100%), respectively followed by pooled PCR [Se = 54% (95% CrI 36–72%), Sp > 99.9% (95% CrI 99.8–100%)] and ELISA [Se = 36% (95% CrI 22–52%), Sp = 98% (95% CrI 96–99%)]. Based on 20 samples per herd, the herd level Se of ELISA was 79% (95% CrI 47–100%) (at least one positive sample) compared to 43% (95% CrI 14–94%) for pooled PCR. Herd-level Sp was 99% (95% CrI 96–100%) for pooled PCR and 90% (95% CrI 83–100%) for ELISA. Cows from herds with dairy cattle on farm and cows with symptoms of JD in the past 3 years were more likely to be MAP positive. Herds that had animals with JD symptoms in the previous 3 years and those with more breeding females were most likely to test positive for MAP. While serum ELISA can be effective for herd screening, PCR performed better for animal testing. Pooled PCR testing could be a less costly option; however, determining the most cost-effective approach will require further economic analysis.
Groundwater drinking water supply surveillance data were accessed to summarize water quality delivered as public and private water supplies in southern Saskatchewan as part of an exposure assessment for epidemiologic analyses of associations between water quality and type 2 diabetes or cardiovascular disease. Arsenic in drinking water has been linked to a variety of chronic diseases and previous studies have identified multiple wells with arsenic above the drinking water standard of 0.01 mg/L; therefore, arsenic concentrations were of specific interest. Principal components analysis was applied to obtain principal component (PC) scores to summarize mixtures of correlated parameters identified as health standards and those identified as aesthetic objectives in the Saskatchewan Drinking Water Quality Standards and Objective. Ordinary, universal, and empirical Bayesian kriging were used to interpolate arsenic concentrations and PC scores in southern Saskatchewan, and the results were compared. Empirical Bayesian kriging performed best across all analyses, based on having the greatest number of variables for which the root mean square error was lowest. While all of the kriging methods appeared to underestimate high values of arsenic and PC scores, empirical Bayesian kriging was chosen to summarize large scale geographic trends in groundwater-sourced drinking water quality and assess exposure to mixtures of trace metals and ions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.