In recent years, the application of deep learning methods has become increasingly popular, especially for big data, because big data has a very large data size and needs to be predicted accurately. One of the big data is the document text data of cancer clinical trials. Clinical trials are studies of human participation in helping people's safety and health. The aim of this paper is to classify cancer clinical texts from a public data set. The proposed algorithms are Bidirectional Long Short Term Memory (BiLSTM) and Word Embedding Features (WE). This study has contributed to a new classification model for documenting clinical trials and increasing the classification performance evaluation. In this study, two experiments work are conducted, namely experimental work BiLSTM without WE, and experimental work BiLSTM using WE. The experimental results for BiLSTM without WE were accuracy = 86.2; precision = 85.5; recall = 87.3; and F-1 score = 86.4. meanwhile the experiment results for BiLSTM using WE stated that the evaluation score showed outstanding performance in text classification, especially in clinical trial texts with accuracy = 92,3; precision = 92.2; recall = 92.9; and F-1 score = 92.5.
Kribo.id merupakan salah satu usaha yang bergerak dibidang penjualan sayur dan pangan secara online. Sesuai dengan namanya Kribo.id telah memanfaatkan teknologi informasi dalam menjalankan kegiatan operasional dan melayani konsumennya. Penerapan sistem informasi di Kribo.id belum pernah dilakukan pengukuran terhadap kinerja teknologi informasi yang ada. Terdapat banyak metode untuk melakukan pengukuran suatu kinerja, salah satunya adalah metode IT Balanced Scorecard. Penggunaan metode ini dikarenakan metode ini dapat memberikan gambaran kinerja sistem informasi berdasarkan empat perspektif yaitu perspektif kontribusi perusahaan, perspektif orientasi pengguna, perspektif penyempurnaan operasional dan perspektif orientasi masa depan. Tujuan penelitian ini adalah melakukan pengukuran kinerja sistem informasi pada Kribo.id menggunakan IT Balanced Scorecard dan membuat rekomendasi perbaikan terhadap kinerja sistem informasi sesuai dengan hasil pengukuran yang dilakukan. Hasil penelitian menunjukkan bahwa Kribo.id pada keempat perspektif berkategori cukup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.