A novel energy-efficient data gathering scheme that exploits spatial-temporal correlation is proposed for clustered wireless sensor networks in this paper. In the proposed method, dual prediction is used in the intracluster transmission to reduce the temporal redundancy, and hybrid compressed sensing is employed in the intercluster transmission to reduce the spatial redundancy. Moreover, an error threshold selection scheme is presented for the prediction model by optimizing the relationship between the energy consumption and the recovery accuracy, which makes the proposed method well suitable for different application environments. In addition, the transmission energy consumption is derived to verify the efficiency of the proposed method. Simulation results show that the proposed method has higher energy efficiency compared with the existing schemes, and the sink can recover measurements with reasonable accuracy by using the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.