IL-10 is an important immunoregulatory factor. However, our understanding of IL-10 gene regulation remains very limited. In this study, following up on our previous novel finding that the protooncogene c-Maf of the basic leucine zipper family of transcription factors is expressed in monocytes and macrophages, we investigate the role of c-Maf in the transcriptional regulation of IL-10 and the underlying molecular mechanism in macrophages. c-Maf-null macrophages exhibit strongly impaired IL-10 protein production and mRNA expression upon LPS stimulation. Ectopic expression of c-Maf stimulates not only exogenously transfected IL-10 promoter-driven luciferase activity in a dose-dependent manner but also enhances endogenous IL-10 gene expression stimulated by LPS. Both in vitro and in vivo experiments identify a c-Maf response element localized to nucleotides −196/−184 relative to the transcription initiation site in the IL-10 promoter. This site represents an atypical 12-O-tetradecanoate-13-acetate-responsive element for musculoaponeurotic fibrosarcoma recognition and functions as an enhancer element in a heterologous and orientation-independent manner. Furthermore, c-Maf is expressed constitutively in resting monocytes/macrophages. IL-4 can up-regulate c-Maf expression, its binding to IL-10 promoter, and dose dependently enhance IL-10 production induced by LPS; moreover, IL-4 failed to enhance LPS-induced IL-10 production in c-Maf-null macrophages. Taken together, these data demonstrate that c-Maf is an indispensable yet constitutive transcription factor for IL-10 gene expression in LPS-activated macrophages, and IL-4 modulates IL-10 production in inflammatory macrophages likely via its ability to induce c-Maf expression. Thus, this study uncovers a novel and important function of c-Maf in macrophages and elucidates its transcriptional mechanism in the regulation of IL-10 gene expression.
Histone modifications play important roles in multiple physiological processes by regulating gene expression. However, the roles of histone modifications in immunity remain poorly understood. Here we report that Ash1l, a H3K4 methyltransferase, suppressed interleukin-6 (IL-6), and tumor necrosis factor (TNF) production in Toll-like receptor (TLR)-triggered macrophages, protecting mice from sepsis. Ash1l-silenced mice were more susceptible to autoimmune disease as a result of enhanced IL-6 production. Ash1l enhanced A20 expression through induction of H3K4 modification at the Tnfaip3 promoter via H3K4 methyltransferase activity of Ash1l SET (Su[var]3-9, E[z] and trithorax) domain. Ash1l suppressed NF-κB, mitogen-activated protein kinase (MAPK) pathways, and subsequent IL-6 production via facilitating A20-mediated NF-κB signal modulator NEMO and transducer TRAF6 deubiquitination. Therefore, Ash1l-mediated H3K4 methylation at the Tnfaip3 promoter is required for controlling innate IL-6 production and suppressing inflammatory autoimmune diseases, providing mechanistic insight into epigenetic modulation of immune responses and inflammation.
Excessive activation of dendritic cells (DCs) leads to the development of autoimmune and inflammatory diseases, which has prompted a search for regulators of DC activation. Here we report that Rhbdd3, a member of the rhomboid family of proteases, suppressed the activation of DCs and production of interleukin 6 (IL-6) triggered by Toll-like receptors (TLRs). Rhbdd3-deficient mice spontaneously developed autoimmune diseases characterized by an increased abundance of the TH17 subset of helper T cells and decreased number of regulatory T cells due to the increase in IL-6 from DCs. Rhbdd3 directly bound to Lys27 (K27)-linked polyubiquitin chains on Lys302 of the modulator NEMO (IKKγ) via the ubiquitin-binding-association (UBA) domain in endosomes. Rhbdd3 further recruited the deubiquitinase A20 via K27-linked polyubiquitin chains on Lys268 to inhibit K63-linked polyubiquitination of NEMO and thus suppressed activation of the transcription factor NF-κB in DCs. Our data identify Rhbdd3 as a critical regulator of DC activation and indicate K27-linked polyubiquitination is a potent ubiquitin-linked pattern involved in the control of autoimmunity.
The aim of this study was to research the expression of IL-37 in systemic lupus erythematosus (SLE) patients and the effect of glucocorticoid on IL-37. Thirty newly diagnosed severe SLE patients receiving prednisone 1 mg/kg/day for 14 consecutive days and 30 healthy subjects were enrolled into this study. The plasma levels of IL-37 and other cytokines were detected by ELISA and the relative mRNA amounts of IL-37 and other cytokines were detected by RT-PCR. The plasma levels of IL-37, IL-18, IL-18BP, IFN-γ, and IL-6 in SLE patients increased significantly compared with healthy controls (p<0.05). The relative amount of IL-37 mRNA increased by 2.45-fold in pre-treatment SLE patients compared with controls (p<0.05). Plasma concentrations of IL-37 correlated with IL-18, IL-18BP, IFN-γ, IL-6 and SLEDAI score in both pre-treatment and post-treatment SLE patients. The plasma levels of IL-37 decreased significantly after treatment of glucocorticoid. The relative amount of IL-37 mRNA decreased by 24.5 % in post-treatment SLE patients compared with pre-treatment ones (p<0.01). In conclusion, IL-37 is upregulated in active SLE patients. IL-37 is correlated with pro-inflammatory cytokines and SLEDAI. Glucocorticoid can downregulate the expression of IL-37 and other cytokines in SLE patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.