The aim of this study was to research the expression of IL-37 in systemic lupus erythematosus (SLE) patients and the effect of glucocorticoid on IL-37. Thirty newly diagnosed severe SLE patients receiving prednisone 1 mg/kg/day for 14 consecutive days and 30 healthy subjects were enrolled into this study. The plasma levels of IL-37 and other cytokines were detected by ELISA and the relative mRNA amounts of IL-37 and other cytokines were detected by RT-PCR. The plasma levels of IL-37, IL-18, IL-18BP, IFN-γ, and IL-6 in SLE patients increased significantly compared with healthy controls (p<0.05). The relative amount of IL-37 mRNA increased by 2.45-fold in pre-treatment SLE patients compared with controls (p<0.05). Plasma concentrations of IL-37 correlated with IL-18, IL-18BP, IFN-γ, IL-6 and SLEDAI score in both pre-treatment and post-treatment SLE patients. The plasma levels of IL-37 decreased significantly after treatment of glucocorticoid. The relative amount of IL-37 mRNA decreased by 24.5 % in post-treatment SLE patients compared with pre-treatment ones (p<0.01). In conclusion, IL-37 is upregulated in active SLE patients. IL-37 is correlated with pro-inflammatory cytokines and SLEDAI. Glucocorticoid can downregulate the expression of IL-37 and other cytokines in SLE patients.
Whereas white adipose tissue depots contribute to the development of metabolic diseases, brown and beige adipose tissue has beneficial metabolic effects. Here we show that CDK6 regulates beige adipocyte formation. We demonstrate that mice lacking the CDK6 protein or its kinase domain (K43M) exhibit significant increases beige cell formation, enhanced energy expenditure, better glucose tolerance, and improved insulin sensitivity, and are more resistant to high-fat diet-induced obesity. Re-expression of CDK6 in Cdk6−/− mature or precursor cells, or ablation of RUNX1 in K43M mature or precursor cells, reverses these phenotypes. Furthermore, RUNX1 positively regulates the expression of Ucp-1 and Pgc1α by binding to proximal promoter regions. Our findings indicate that CDK6 kinase activity negatively regulates the conversion of fat-storing cells into fat-burning cells by suppressing RUNX1, and suggest that CDK6 may be a therapeutic target for the treatment of obesity and related metabolic diseases.
Progranulin (PGRN) is a widely expressed growth factor that effectively inhibits tumor necrosis factor α (TNFα)-mediated inflammatory response. TNFα is involved in intervertebral disc degeneration (IDD) and plays a key role. This study aims to determine the role of PGRN in the intervertebral disc degeneration process. We collected intervertebral discs (IVDs) from humans and mice with different genetic backgrounds. We examined the expression of PGRN in IVD tissues by immunohistochemistry staining and Western blotting assay. We examined the peripheral serum level of PGRN by ELISA assay. Murine IVD tissue samples were taken to undergo safranin O, HE, and immunohistochemistry staining. Primary human nucleus pulposus cells were used for ELISA and RT-PCR assays. PGRN as well as interlukin-10 (IL-10) and interlukin-17 (IL-17) expressions were elevated in degenerative discs and peripheral blood sera. Loss of PGRN led to accelerated disc degeneration in the animal model, along with decreased expression of IL-10 and increased expression of IL-17. Additionally, the PGRN level was positively related to levels of IL-10 and IL-17. In vitro study suggested that PGRN protected against disc degeneration by inducing IL-10 and reducing IL-17. PGRN is associated with intervertebral disc degeneration through interfering with IL-10 and IL-17; thus, PGRN could be an interesting biomarker for diagnosis and a potential treatment target.
Small nucleolar RNA host gene 3 (SNHG3), a long noncoding RNA (lncRNA), acts as an oncogene in hepatocellular carcinoma (HCC), whereas microRNA (miR)-326 plays an inhibitory role in some types of human cancers, including melanoma, osteosarcoma, and gastric cancer. In the present study, by analyzing 47 tissue specimens of human HCC, we found that the relative expression levels of SNHG3 were significantly higher in HCC tissues than those in the adjacent noncancerous tissues, whereas the relative expression levels of miR-326 were significantly lower in HCC tissues. Furthermore, the relative mRNA levels of Sma and Mad Related Family 3 (SMAD3) and zinc finger E-box binding homeobox 1 (ZEB1) were significantly higher in HCC tissues compared with the adjacent noncancerous tissues. In human HCC cell lines, SNHG3 overexpression promoted the proliferation, migration, and epithelial-mesenchymal transition and inhibited apoptosis, whereas knockdown of SNHG3 expression exerted the opposite effects. Importantly, miR-326 or miR-326 inhibitor restored the aforementioned effects of SNHG3 overexpression or SNHG3 knockdown. We thus found that the miR-326-response element is present in SNHG3 and the 3'-untranslated region of SMAD3 mRNA. In fact, SNHG3 overexpression increased the expression levels of SMAD3 and ZEB1, while miR-326 decreased the expression levels of SMAD3. These results suggest that SNHG3 may function as a competing endogenous RNA (ceRNA) for miR-326, which in turn enhances SMAD3 and ZEB1 expression. In conclusion, we propose that SNHG3 promotes HCC progression via the miR-326/SMAD3/ZEB1 signaling pathway. The findings may provide novel targets for the diagnosis and treatment of HCC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.