Formyl peptides are potent neutrophil chemoattractants. In humans and rabbits, the formyl peptide receptor (FPR) binds N-formyl-Met-Leu-Phe (fMLF) with high affinity (Kd ≈ 1 nM). The mouse FPR (mFPR) is a low-affinity receptor for fMLF (Kd ≈ 100 nM); therefore, other agonists for this receptor may exist. Using mFPR-transfected rat basophilic leukemia cells, we found that a recently identified synthetic peptide Trp-Lys-Tyr-Met-Val-d-Met (WKYMVm) is a potent agonist for mFPR. WKYMVm induced calcium mobilization with an EC50 of 1.2–1.5 nM. Optimal chemotaxis was achieved with 1 nM of WKYMVm, but it required 100 nM of fMLF. WKYMVm stimulated rapid and potent phosphorylation of the mitogen-activated protein kinases extracellular signal-related kinases 1 and 2 when used at 50 nM. Pertussis toxin only partially blocked calcium mobilization and production of inositol 1,4,5-trisphosphate in the stimulated mFPR cells, suggesting the possibility that this receptor couples to Gα proteins other than Gi and Go. Competitive binding and desensitization data suggest that both peptides interact with the same receptor but may use nonoverlapping binding sites because WKYMVm was unable to effectively displace [3H]fMLF bound to mFPR. These results provide evidence for the presence of an alternative potent agonist for mFPR, and suggest a potential usage of WKYMVm for probing the ligand-receptor interactions with the murine formyl peptide receptor homologs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.