BackgroundOct4 is a major transcription factor related to stem cell self-renewal and differentiation. To fulfill its functions, it must be able to enter the nucleus and remain there to affect transcription. KPNA2, a member of the karyopherin family, plays a central role in nucleocytoplasmic transport. The objective of the current study was to examine the association between Oct4 and KPNA2 expression levels with regard to both the clinicopathological characteristics and prognoses of patients with non-small-cell lung cancer (NSCLC).MethodsImmunohistochemistry was used to detect the expression profile of Oct4 and KPNA2 in NSCLC tissues and adjacent noncancerous lung tissues. Real-time polymerase chain reaction and western blotting were used to detect the mRNA and protein expression profiles of Oct4 and KPNA2 in lung cancer cell lines. Small interfering RNAs were used to deplete Oct4 and KPNA2 expressions. Double immunofluorescence was used to detect Oct4 expression in KPNA2 knockdown cells. Co-immunoprecipitation was used to detect the interaction of Oct4 and KPNA2.ResultsOct4 was overexpressed in 29 of 102 (28.4%) human lung cancer samples and correlated with differentiation (P = 0.002) and TNM stage (P = 0.003). KPNA2 was overexpressed in 56 of 102 (54.9%) human lung cancer samples and correlated with histology (P = 0.001) and differentiation (P = 0.045). Importantly, Oct4 and KPNA2 expression levels correlated significantly (P < 0.01). Expression of Oct4 and KPNA2 was associated with short overall survival. In addition, depleting Oct4 and KPNA2 expression using small interfering RNAs inhibited proliferation in lung cancer cell lines. Real-time polymerase chain reaction and western blotting analysis indicated that reduction of KPNA2 expression significantly reduced mRNA and nucleoprotein levels of Oct4. Double immunofluorescence analysis revealed that nuclear Oct4 signals were reduced significantly in KPNA2 knockdown cells. Co-immunoprecipitation experiments revealed that KPNA2 interacts with Oct4 in lung cancer cell lines.ConclusionOct4 and KPNA2 play an important role in NSCLC progression. Oct4 nuclear localization may be mediated by its interaction with KPNA2.
Abstract. Glioblastoma multiforme (GBM) demonstrates an unsatisfactory clinical prognosis due to the intrinsic or acquired resistance to temozolomide (TMZ) exhibited by the tumors. One possible cause of TMZ resistance in GBM is the overexpression of O 6 -methylguanine-DNA methyltransferase (MGMT), which can repair the TMZ-induced guanine damage in DNA. Additionally, excessive activated NF-κB is reported to be a component of the major inflammatory transcription pathway that is associated with TMZ resistance in GBM. However, the association between the NF-κB pathway and MGMT expression in GBM cells is unknown. Therefore, in the present study, the TMZ resistant (TR) U251 cell line (TR/U251) was successfully constructed to detect how the TR/U251 cell line and the parental U251 cell line each interact with TMZ in vitro. The TR/U251 cells were approximately five times more resistant to TMZ compared with the parental cells. Furthermore, it was found that the NF-κB inhibitor BAY 11-7082 suppressed the expression of MGMT in TR/U251 cells and enhanced TMZ-induced cytotoxicity and apoptosis, thereby indicating that the NF-κB pathway and MGMT interact to promote TMZ resistance. The inhibition of NF-κB may be a promising strategy to reverse drug resistance in TR glioma cells. The present results propose a potential mechanism for using the NF-κB inhibitor BAY 11-7082 as a potential therapy for the treatment of TR glioma. Although BAY 11-7082 is a well-known NF-κB inhibitor, the present study further investigated its underlying mechanisms through a series of new experiments.
Background: Health benefits of designed functional foods using dairy fermented products in co-production with medicinal herbs are under comprehensive investigations. Yoghurt has triggered a functional food revolution while green tea and Moringa oleifera represent precious source of high content of various types of antioxidants and micronutrients. Oxidative stress and lipid peroxidation are suggested mechanisms involved in lead toxicity. The aim of present study was to assess protective effects of green tea and moringa leave extracts and their bio-yoghurts against lead acetate-induced oxidative stress in male rats by following liver weight and enzymes and lipids profile.
Resveratrate exerts protective effects against repetitive ssUVR-induced sunburn and suntan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.