Anisotropic carrier transport properties of unintentionally doped InAs/InAs0.65Sb0.35 type-II strain-balanced superlattice material are evaluated using temperature- and field-dependent magnetotransport measurements performed in the vertical direction on a substrate-removed metal-semiconductor-metal device structure. To best isolate the measured transport to the superlattice, device fabrication entails flip-chip bonding and backside device processing to remove the substrate material and deposit contact metal directly to the bottom of an etched mesa. High-resolution mobility spectrum analysis is used to calculate the conductance contribution and corrected mixed vertical-lateral mobility of the two carrier species present. Combining the latter with lateral mobility results from in-plane magnetotransport measurements on identical superlattice material allows for the calculation of the true vertical majority electron and minority hole mobilities; amplitudes of 4.7 ×103 cm2/V s and 1.60 cm2/V s are determined at 77 K, respectively. The temperature-dependent results show that vertical hole mobility rapidly decreases with decreasing temperature due to trap-induced localization and then hopping transport, whereas vertical electron mobility appears phonon scattering-limited at high temperature, giving way to interface roughness scattering at low temperatures, analogous to the lateral electron mobility but with a lower overall magnitude.
The minority carrier diffusion length was directly measured by the variable-temperature Electron Beam-Induced Current technique in InAs/GaSb type-II strain-layer-superlattice infrared-detector structures. The Molecular Beam Epitaxy-grown midwave infrared superlattices comprised 10 monolayers of InAs and 10 monolayers of GaSb to give a total absorber thickness of 4 lm. The diffusion length of minority electrons in the p-type absorber region of the p-type/barrier/n-type structure was found to increase from 1.08 to 2.24 lm with a thermal activation energy of 13.1 meV for temperatures ranging from 77 to 273 K. These lengths significantly exceed the individual 10-monolayer thicknesses of the InAs and GaSb, possibly indicating a low impact of interface scattering on the minority carrier diffusion length. The corresponding minority electron mobility varied from 48 to 65 cm 2 /V s. An absorbed gamma irradiation dose of 500 Gy halved the minority carrier diffusion length and increased the thermal activation energy to 18.6 meV, due to creation of radiation-induced defect recombination centers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.