Salinity gradient power is a renewable, non-intermittent, and neutral carbon energy source. Reverse electrodialysis is one of the most efficient and mature techniques that can harvest this energy from natural estuaries produced by the mixture of seawater and river water. For this, the development of cheap and suitable ion-exchange membranes is crucial for a harvest profitability energy from salinity gradients. In this work, both anion-exchange membrane and cation-exchange membrane based on poly(epichlorohydrin) and polyvinyl chloride, respectively, were synthesized at a laboratory scale (255 cm2) by way of a solvent evaporation technique. Anion-exchange membrane was surface modified with poly(ethylenimine) and glutaraldehyde, while cellulose acetate was used for the cation exchange membrane structural modification. Modified cation-exchange membrane showed an increase in surface hydrophilicity, ion transportation and permselectivity. Structural modification on the cation-exchange membrane was evidenced by scanning electron microscopy. For the modified anion exchange membrane, a decrease in swelling degree and an increase in both the ion exchange capacity and the fixed charge density suggests an improved performance over the unmodified membrane. Finally, the results obtained in both modified membranes suggest that an enhanced performance in blue energy generation can be expected from these membranes using the reverse electrodialysis technique.
Blue energy (or salinity gradient energy) is a renewable, carbon-neutral, and continuous electrical energy source that can be obtained via the reverse electrodialysis (RED) technique. The viability of this technology strictly depends on the performance and cost of the ion-exchange membranes (IEMs) that compose the RED units; designing the optimal membrane represents a critical challenge due to the complex relation between the performance, properties, and structure of the membrane. In this work, we present our findings on an electrospun cation-exchange membrane based on polyvinyl chloride (PVC), a strongly acidic cation exchange resin, with sodium dodecyl sulfate (SDS) as an additive. We contrast it with a similar membrane produced with the more conventional casting solution technique. The electrospinning technique provides thinner and more homogeneous membranes than those synthesized via casting. The membranes were characterized using morphological, spectroscopic, and analytical methods. Scanning electron microscopy images depicted an intertwined nanofiber mesh within the membrane. We also synthesized the same electrospun cation exchange membrane without SDS; this membrane presented 63% less swelling, and a significant increase in the fixed charge density (CDfix) (119.6 meq/g) when compared to its casting solution counterpart (34 meq/g). This suggests an enhanced permselectivity, and thus better performance for blue energy generation in RED units.
In this work, the hydrodynamic effects of rotating disk filtration (with maximum shear rates of 16 000 s −1 and 66 000 s −1) were evaluated and compared with the crossflow filtration (16 000 s −1) in the recovery of lipids from a model solution that simulates the characteristics of Parachlorella kessleri aqueous extracts. Four polymeric membranes were tested. The PAN 500 kDa membrane along with the rotating disk filtration presented the best performances for lipid concentration and coalescence. The rotating disk filtration was tested with real microalgae extracts, confirming the total lipid retention and the limited membrane fouling.
The biorefinery of microalgae necessitates innovative choices of soft and energy-efficient processes to guarantee the integrity of fragile molecules and develop eco-friendly production. A wet processing of biomass is proposed, which avoids expensive drying steps. It includes harvesting, cell disruption, and fractionation of the target compounds. Membrane filtration is a promising clean fractionation step. In this paper, the recovery of lipids from starving Parachlorella kessleri aqueous extracts by cross-flow filtration was studied. A model solution was formulated to test four membranes of different materials (PVDF, PES, PAN) and cutoffs (200 kDa-1.5 µm). The hydrophilic PAN 500 kDa membrane presented the best performance (flux stability, permeate flux, lipid retention, and cleanability) and was therfore selected for filtrating real aqueous extracts. Similar permeation fluxes were obtained with model and real products: 34-41 L h −1 m −2 respectively. The coalescence of lipid droplets was observed with model solutions but not with real products, less concentrated. The lipids from the real products were wholly retained by the PAN membrane, whereas some of the polysaccharides and proteins were able to permeate. An optimization of the coupling between culture, cell disruption, clarification, and filtration would allow a good concentration and purification of the lipids from microalgae.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.