The VY1160 mutant is characterized by cell lysis in hypotonic solutions and generally increased permeability to substances for which Saccharomyces cerevisiae cells are not permeable. Two mutations, srb1 and ts1, have been identified in VY1160 mutant, and previous studies (Kozhina et al., 1979) have shown srb1 to be responsible for cell lysis. We now present evidence that the ts1 mutation leads to increased endocytosis in VY1160 cells. The internalization of lucifer yellow carbohydrazide in VY1160 cells is time-, temperature- and energy-dependent and consistent with a fluid-phase mechanism of endocytosis. The rate of steady-state accumulation of the dye at 37 degrees C is 145 ng/micrograms DNA per h for VY1160 mutant and 23 ng/micrograms DNA per h for S288C parental strain. Studies with isogenic strains having either the srb1 or the ts1 mutation, or SRB1 TS1 wild-type alleles have shown that only ts1 strains possess increased endocytosis. Quantitation of endocytosis in cells grown at 24 degrees C and shifted at 38 degrees C shows that ts1 strains, but not srb1 and wild-type strains, increase ten-fold the internalization of lucifer yellow 2 h after the shift at 38 degrees C. The analysis of ts1 x wild-type crosses provides evidence that the temperature-sensitive phenotype segregates together with the enhanced endocytosis. It is concluded that the increased endocytosis might explain the generally increased permeability of VY1160 mutant cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.