Certain COOH-terminus mutants of connexin32 (Cx32) were previously shown to form channels with unusual transjuctional voltage (V(j)) sensitivity when tested heterotypically in oocytes against Cx32 wild type. Junctional conductance (G(j)) slowly increased by severalfold or decreases to nearly zero with V(j) positive or negative, respectively, at mutant side, and V(j) positive at mutant side reversed CO(2)-induced uncoupling. This suggested that the CO(2)-sensitive gate might be a V(j)-sensitive slow gate. Based on previous data for calmodulin (CaM) involvement in gap junction function, we have hypothesized that the slow gate could be a CaM-like pore plugging molecule (cork gating model). This study describes a similar behavior in heterotypic channels between Cx32 and each of four new Cx32 mutants modified in cytoplasmic-loop and/or COOH-terminus residues. The mutants are: ML/NN+3R/N, 3R/N, ML/NN and ML/EE; in these mutants, N or E replace M105 and L106, and N replace R215, R219 and R220. This study also reports that inhibition of CaM expression strongly reduces V(j) and CO(2) sensitivities of two of the most effective mutants, suggesting a CaM role in slow and chemical gating.
Cytosolic changes control gap junction channel gating via poorly understood mechanisms. In the past two decades calmodulin participation in gating has been suggested, but compelling evidence for it has been lacking.
Connexin channels are gated by transjunctional voltage ( V j) or CO2 via distinct mechanisms. The cytoplasmic loop (CL) and arginines of a COOH-terminal domain (CT1) of connexin32 (Cx32) were shown to determine CO2sensitivity, and a gating mechanism involving CL-CT1 association-dissociation was proposed. This study reports that Cx32 mutants, tandem, 5R/E, and 5R/N, designed to weaken CL-CT1interactions, display atypical V jand CO2 sensitivities when tested heterotypically with Cx32 wild-type channels in Xenopus oocytes. In tandems, two Cx32 monomers are linked NH2-to-COOH terminus. In 5R/E and 5R/N mutants, glutamates or asparagines replace CT1 arginines. On the basis of the intriguing sensitivity of the mutant-32 channel to V jpolarity, the existence of a “slow gate” distinct from the conventional V jgate is proposed. To a lesser extent the slow gate manifests itself also in homotypic Cx32 channels. Mutant-32 channels are more CO2 sensitive than homotypic Cx32 channels, and CO2-induced chemical gating is reversed with relative depolarization of the mutant oocyte, suggesting V jsensitivity of chemical gating. A hypothetical pore-plugging model involving an acidic cytosolic protein (possibly calmodulin) is discussed.
Reversible changes in gap junction structure similar to those previously seen to parallel electrical uncoupling (9,33,34) are produced by treating with Ca" or Mg" gap junctions isolated in EDTA from calf lens fibers . The changes, characterized primarily by a switch from disordered to crystalline particle packings, occur at a [Ca"] of 5-10 -7 M or higher and a [Mg"] of 110-3 M or higher and can be reversed by exposing the junctions to Ca ++ -and Mg"-free EGTA solutions. Similar changes are obtained in junctions of rat stomach epithelia incubated at 37°C in well-oxygenated Tyrode's solutions containing a Ca' ionophore (A23187) . Deep etching experiments on isolated lens junctions show that the true cytoplasmic surface of the junctions (PS face) is mostly bare, suggesting that the particles may not be connected to cytoskeletal elements . A hypothesis is proposed suggesting a mechanism of particle aggregation and channel narrowing based on neutralization of negative charges by divalent cations or H + .
The relationship among intracellular pH (pHi), -log10 intracellular Ca2+ concentration (pCai) and gap junctional conductance, the participation of Ca2+ stores, and the role of calmodulin in channel regulation have been studied in Xenopus oocytes, expressing the native connexin (Cx38), exposed to external solutions bubbled with 100% CO2. The time courses of pHi [measured with 2',7'-bis(2-carboxyethyl)-5,6-carboxyfluorscein (BCECF)], pCai (measured with the membrane-associated fura-C18) and junctional conductance (measured with a double voltage-clamp protocol) were compared. The data obtained confirm previous evidence for a closer relationship of junctional conductance with pCai than with pHi. Evidence for an inhibitory effect of intracellularly injected ruthenium red or 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA) on CO2-induced uncoupling, coupled to negative results with Ca2+-free external solutions, point to a low-pHi -induced Ca2+ release from internal stores, likely to be primarily mitochondria. The hypothesis proposing a participation of calmodulin in channel gating was tested by studying the effects of calmodulin expression inhibition by intracellular injection of oligonucleotides antisense to the two calmodulin mRNAs expressed in the oocytes. Calmodulin mRNA was permanently eliminated in 5h. The oocytes injected with the antisense nucleotides progressively lost the capacity to uncouple with CO2 within 72 h. The effect of CO2 on junctional conductance was reduced by approximately 60% in 24 h, by approximately 76% in 48 h and by approximately 93% in 72 h. Oocytes that had lost gating sensitivity to CO2 partially recovered gating competency following calmodulin injection. The data suggest that lowered pHi uncouples gap junctions by a Ca2+- calmodulin-mediated mechanism.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.