Highlights d Of several cytokines tested, only synergism of TNF-a and IFN-g induces PANoptosis d TNF-a and IFN-g-mediated PANoptosis perpetuates cytokine storm d TNF-a and IFN-g shock mirrors cytokine storm syndromes, including COVID-19 d Neutralizing TNF-a and IFN-g protects against SARS-CoV-2, HLH, and sepsis in mice
The COVID-19 pandemic has caused significant morbidity and mortality. Currently, there is a critical shortage of proven treatment options and an urgent need to understand the pathogenesis of multi-organ failure and lung damage. Cytokine storm is associated with severe inflammation and organ damage during COVID-19. However, a detailed molecular pathway defining this cytokine storm is lacking, and gaining mechanistic understanding of how SARS-CoV-2 elicits a hyperactive inflammatory response is critical to develop effective therapeutics. Of the multiple inflammatory cytokines produced by innate immune cells during SARS-CoV-2 infection, we found that the combined production of TNF-α and IFN-γ specifically induced inflammatory cell death, PANoptosis, characterized by gasdermin-mediated pyroptosis, caspase-8-mediated apoptosis, and MLKL-mediated necroptosis. Deletion of pyroptosis, apoptosis, or necroptosis mediators individually was not sufficient to protect against cell death. However, cells deficient in both RIPK3 and caspase-8 or RIPK3 and FADD were resistant to this cell death. Mechanistically, the STAT1/IRF1 axis activated by TNF-α and IFN-γ co-treatment induced iNOS for the production of nitric oxide. Pharmacological and genetic deletion of this pathway inhibited pyroptosis, apoptosis, and necroptosis in macrophages. Moreover, inhibition of PANoptosis protected mice from TNF-α and IFN-γ-induced lethal cytokine shock that mirrors the pathological symptoms of COVID-19. In vivo neutralization of both TNF-α and IFN-γ in multiple disease models associated with cytokine storm showed that this treatment provided substantial protection against not only SARS-CoV-2 infection, but also sepsis, hemophagocytic lymphohistiocytosis, and cytokine shock models, demonstrating the broad physiological relevance of this mechanism. Collectively, our findings reveal that blocking the COVID-19 cytokine-mediated inflammatory cell death signaling pathway identified in this study may benefit patients with COVID-19 or other cytokine storm-driven syndromes by limiting inflammation and tissue damage. The findings also provide a molecular and mechanistic description for the term cytokine storm. Additionally, these results open new avenues for the treatment of other infectious and autoinflammatory diseases and cancers where TNF-α and IFN-γ synergism play key pathological roles.
Intranasal instillation is a widely used procedure for pneumonic delivery of drugs, vaccine candidates, or infectious agents into the respiratory tract of research mice. However, there is a paucity of published literature describing the efficiency of this delivery technique. In this report we have used the murine model of tularemia, with Francisella tularensis live vaccine strain (FTLVS) infection, to evaluate the efficiency of pneumonic delivery via intranasal dosing performed either with differing instillation volumes or different types of anesthesia. FTLVS was rendered luminescent via transformation with a reporter plasmid that constitutively expressed the Photorhabdus luminescens lux operon from a Francisella promoter. We then used an IVIS Spectrum whole animal imaging system to visualize FT dissemination at various time points following intranasal instillation. We found that instillation of FT in a dose volume of 10 µl routinely resulted in infection of the upper airways but failed to initiate infection of the pulmonary compartment. Efficient delivery of FT into the lungs via intranasal instillation required a dose volume of 50 µl or more. These studies also demonstrated that intranasal instillation was significantly more efficient for pneumonic delivery of FTLVS in mice that had been anesthetized with inhaled (isoflurane) vs. parenteral (ketamine/xylazine) anesthesia. The collective results underscore the need for researchers to consider both the dose volume and the anesthesia type when either performing pneumonic delivery via intranasal instillation, or when comparing studies that employed this technique.
Mycobacterium tuberculosis lipid metabolism pathways facilitate access to carbon and energy sources during infection. M. tuberculosis gene Rv1075c was annotated as a conserved hypothetical protein. We identified that Rv1075c amino acid sequence shares similarities with other bacterial lipase/esterases and we demonstrated that it has esterase activity, with preference for short-chain fatty acids, particularly acetate, with highest activity at 45°C, pH 9. Site-direct mutagenesis revealed its activity triad as Ser80, Asp244, and His247. We further determined that rRv1075c hydrolyzed triacetin and tributyrin, and it was mainly distributed in cell wall and membrane. Its expression was induced at pH 4.5, mimicking the acidic phagosome of macrophages. Mutation of Rv1075c led to reduced bacterial growth in THP-1 cells and human peripheral blood mononuclear cell-derived macrophages, and attenuated M. tuberculosis infection in mice. Our data suggest that Rv1075c is involved in ester and fatty acid metabolism inside host cells.
Background: Alterations in peptide-MHC interactions with the T cell receptor (TCR) can lead to dramatically different T cell outcomes. Results: We have found that T cells activated by A9 signal via FcR␥ and Syk. Conclusion: By dissecting the molecular mechanism of A9-induced T cell signaling, we have defined a new alternate pathway. Significance: Understanding this pathway may be critical for the proper application of Syk inhibitors to RA therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.