Contamination of food and feed with mycotoxins is a worldwide problem. At present, acute mycotoxicosis caused by high doses is rare in humans and animals. Ingestion of low to moderate amounts of Fusarium mycotoxins is common and generally does not result in obvious intoxication. However, these low amounts may impair intestinal health, immune function and/or pathogen fitness, resulting in altered host pathogen interactions and thus a different outcome of infection. This review summarizes the current state of knowledge about the impact of Fusarium mycotoxin exposure on human and animal host susceptibility to infectious diseases. On the one hand, exposure to deoxynivalenol and other Fusarium mycotoxins generally exacerbates infections with parasites, bacteria and viruses across a wide range of animal host species. Well-known examples include coccidiosis in poultry, salmonellosis in pigs and mice, colibacillosis in pigs, necrotic enteritis in poultry, enteric septicemia of catfish, swine respiratory disease, aspergillosis in poultry and rabbits, reovirus infection in mice and Porcine Reproductive and Respiratory Syndrome Virus infection in pigs. However, on the other hand, T-2 toxin has been shown to markedly decrease the colonization capacity of Salmonella in the pig intestine. Although the impact of the exposure of humans to Fusarium toxins on infectious diseases is less well known, extrapolation from animal models suggests possible exacerbation of, for instance, colibacillosis and salmonellosis in humans, as well.
The slow growth of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), hinders development of new diagnostics, therapeutics and vaccines. Using non-invasive real-time imaging technologies to monitor the disease process in live animals would facilitate TB research in all areas. We developed fluorescent protein (FP) expressing Mycobacterium bovis BCG strains for in vivo imaging, which can be used to track bacterial location, and to quantify bacterial load in live animals. We selected an optimal FP for in vivo imaging, by first cloning six FPs: tdTomato, mCherry, mPlum, mKate, Katushka and mKeima, into mycobacteria under either a mycobacterial Hsp60 or L5 promoter, and compared their fluorescent signals in vitro and in vivo. Fluorescence from each FP-expressing strain was measured with a multimode reader using the optimal excitation and emission wavelengths for the FP. After normalizing bacterial numbers with optical density, the strain expressing L5-tdTomato displayed the highest fluorescence. We used the tdTomato-labeled M. bovis BCG to obtain real-time images of pulmonary infections in living mice and rapidly determined the number of bacteria present. Further comparison between L5-tdTomato and Hsp60-tdTomato revealed that L5-tdTomato carried four-fold more tdTomato gene copies than Hsp60-tdTomato, which eventually led to higher protein expression of tdTomato. Evaluating anti-TB efficacy of rifampicin and isoniazid therapy in vitro and in vivo using the L5-tdTomato strain demonstrated that this strain can be used to identify anti-TB therapeutic efficacy as quickly as 24 h post-treatment. These M. bovis BCG reporter strains represent a valuable new tool for evaluation of therapeutics, vaccines and virulence.
Although aspergillosis is one of the most common diseases in captive birds, the pathogenesis of avian aspergillosis is poorly known. We studied the role of avian respiratory macrophages as a first line of defense against avian aspergillosis. The phagocytic and killing capacities of avian respiratory macrophages were evaluated using pigeon respiratory macrophages that were inoculated with Aspergillus fumigatus conidia. On average, 25% of macrophage-associated conidia were phagocytosed after one hour. Sixteen percents of these cell-associated conidia were killed after 4 h and conidial germination was inhibited in more than 95% of the conidia. A. fumigatus conidia were shown to be cytotoxic to the macrophages. Intracellularly germinating conidia were located free in the cytoplasm of necrotic cells, as shown using transmission electron microscopy. These results suggest that avian respiratory macrophages may prevent early establishment of infection, unless the number of A. fumigatus conidia exceeds the macrophage killing capacity, leading to intracellular germination and colonization of the respiratory tract.
Mycobacterium tuberculosis lipid metabolism pathways facilitate access to carbon and energy sources during infection. M. tuberculosis gene Rv1075c was annotated as a conserved hypothetical protein. We identified that Rv1075c amino acid sequence shares similarities with other bacterial lipase/esterases and we demonstrated that it has esterase activity, with preference for short-chain fatty acids, particularly acetate, with highest activity at 45°C, pH 9. Site-direct mutagenesis revealed its activity triad as Ser80, Asp244, and His247. We further determined that rRv1075c hydrolyzed triacetin and tributyrin, and it was mainly distributed in cell wall and membrane. Its expression was induced at pH 4.5, mimicking the acidic phagosome of macrophages. Mutation of Rv1075c led to reduced bacterial growth in THP-1 cells and human peripheral blood mononuclear cell-derived macrophages, and attenuated M. tuberculosis infection in mice. Our data suggest that Rv1075c is involved in ester and fatty acid metabolism inside host cells.
Mycobacterium tuberculosis Rv3775 (LipE) was annotated as a putative lipase. However, its lipase activity has never been characterized, and its precise role in tuberculosis (TB) pathogenesis has not been thoroughly studied to date. We overexpressed and purified the recombinant LipE (rLipE) protein and demonstrated that LipE has a lipase/esterase activity. rLipE prefers medium-chain ester substrates, with the maximal activity on hexanoate. Its activity is the highest at 40°C and pH 9.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.