A Tesla turbine is developed in order to utilize the potential energy within household water supply and convert to electricity energy without significant head loss. Pressure within the water supply having higher potential energy compared to the energy needed to reach the reservoir tank. This extra potential energy can be utilized and convert to useful energy before it being waste after reach reservoir tank. The development of Tesla turbine is carried out to determine disc size, disk gap and number of disc base on theoretical calculation of Tesla turbine. Optimization is done by using Computational Fluid Dynamics (CFD) software package. Actual performance analysis for prototype based on RPM and torque also conducted. After the optimization, we observed that the Tesla turbine design yields torque of 0.0330N.m with an efficiency of 10.7% .
A modified dynamic cellular automata model is proposed to simulate the evacuation of occupants from a room with obstacles. The model takes into account some factors that play an important role in an evacuation process, such as human emotions and crowd density around the exits. It also incorporates people’s ability to select a less congested exit route, a factor that is rarely investigated. The simulation and experimental results show that modifications to the exits provide reasonable improvement to evacuation time, after taking into account the fact that people will tend to select exit routes based on the distance to the exits and the crowd density around the exits. In addition, the model is applied to simulations of classroom and restaurant evacuation. Results obtained with the proposed model are compared with those of several existing models. The outcome of the comparison demonstrates that it performs better than existing models.
In neural networks, the accuracies of its networks are mainly relying on two important factors which are the centers and spread value. Radial basis function network (RBFN) is a type of feedforward network that capable of perform nonlinear approximation on unknown dataset. It has been widely used in classification, pattern recognition, nonlinear control and image processing. Thus, with the increases in RBFN application, some problems and weakness of RBFN network is identified. Through the combination of quantum computing and RBFN provides a new research idea in design and performance improvement of RBFN system. This paper describes the theory and application of quantum computing and cloning operators, and discusses the superiority of these theories and the feasibility of their optimization algorithms. This proposed improved RBFN (I-RBFN) that combined with cloning operator and quantum computing algorithm demonstrated its ability in global search and local optimization to effectively speed up learning and provides better accuracy in prediction results. Both the algorithms that combined with RBFN optimize the centers and spread value of RBFN. The proposed I-RBFN was tested against the standard RBFN in predictions. The experimental models were tested on four literatures nonlinear function and four real-world application problems, particularly in Air pollutant problem, Biochemical Oxygen Demand (BOD) problem, Phytoplankton problem, and forex pair EURUSD. The results are compared to I-RBFN for root mean square error (RMSE) values with standard RBFN. The proposed I-RBFN yielded better results with an average improvement percentage more than 90 percent in RMSE.
The accuracies rates of the neural networks mainly depend on the selection of the correct data centers. The K-means algorithm is a widely used clustering algorithm in various disciplines for centers selection. However, the method is known for its sensitivity to initial centers selection. It suffers not only from a high dependency on the algorithm's initial centers selection but, also from data points. The performance of K-means has been enhanced from different perspectives, including centroid initialization problem over the years. Unfortunately, the solution does not provide a good trade-off between quality and efficiency of the centers produces by the algorithm. To solve this problem, a new method to find the initial centers and improve the sensitivity to the initial centers of K-means algorithm is proposed. This paper presented a training algorithm for the radial basis function network (RBFN) using improved K-means (KM) algorithm, which is the modified version of KM algorithm based on distance-weighted adjustment for each centers, known as distance-weighted K-means (DWKM) algorithm. The proposed training algorithm, which uses DWKM algorithm select centers for training RBFN obtained better accuracy in predictions and reduced network architecture compared to the standard RBFN. The proposed training algorithm was implemented in MATLAB environment; hence, the new network was undergoing a hybrid learning process. The network called DWKM-RBFN was tested against the standard RBFN in predictions. The experimental models were tested on four literatures nonlinear function and four real-world application problems, particularly in Air pollutant problem, Biochemical Oxygen Demand (BOD) problem, Phytoplankton problem, and forex pair EURUSD. The results are compared to proposed method for root mean square error (RMSE) in radial basis function network (RBFN). The proposed method yielded a promising result with an average improvement percentage more than 50 percent in RMSE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.