This paper we study the condition where the water hammer effect is occurs in pipe line. Water hammer can cause the pipe to break if the pressure is high enough. The experiment will be setup to investigate the water hammer effect in order to avoid the water hammer effect happen. The prevention of water hammer effect will be propose and prove the prevention method is successfully reduce the water hammer effect. The prevention method using is installing the bypass pipe with non-return valve. The experiment is done by capture the vibration signal by using data acquisition device and accelerometer. The pressure signal is capture after a sudden shutoff for the valve. The signal is than analyze and convert to wave speed. The project is differentiating and compares the water hammer phenomenon with different pipe material, pipe length, inlet diameter of pipe, and pressure in pipeline. From the experiment, result shown that the lower strength material pipe, smaller inlet diameter pipe, and longer pipe will deal with lager water hammer effect. Besides, the prevention method by installing by pass pipe with non-return valve of water hammer effect is proved successfully reduce the water hammer phenomenon by 33.33% of pressure.
A Tesla turbine is developed in order to utilize the potential energy within household water supply and convert to electricity energy without significant head loss. Pressure within the water supply having higher potential energy compared to the energy needed to reach the reservoir tank. This extra potential energy can be utilized and convert to useful energy before it being waste after reach reservoir tank. The development of Tesla turbine is carried out to determine disc size, disk gap and number of disc base on theoretical calculation of Tesla turbine. Optimization is done by using Computational Fluid Dynamics (CFD) software package. Actual performance analysis for prototype based on RPM and torque also conducted. After the optimization, we observed that the Tesla turbine design yields torque of 0.0330N.m with an efficiency of 10.7% .
A modified dynamic cellular automata model is proposed to simulate the evacuation of occupants from a room with obstacles. The model takes into account some factors that play an important role in an evacuation process, such as human emotions and crowd density around the exits. It also incorporates people’s ability to select a less congested exit route, a factor that is rarely investigated. The simulation and experimental results show that modifications to the exits provide reasonable improvement to evacuation time, after taking into account the fact that people will tend to select exit routes based on the distance to the exits and the crowd density around the exits. In addition, the model is applied to simulations of classroom and restaurant evacuation. Results obtained with the proposed model are compared with those of several existing models. The outcome of the comparison demonstrates that it performs better than existing models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.