Silver ion (Ag(+)) is a highly toxic heavy metal ion to fungi, viruses, bacteria, and animals. Therefore, Ag(+) monitoring in water or food resources has become extraordinarily important within the scope of human health. Here, we report a gold nanoparticles and enzyme cleavage-based dual signal amplification strategy for ultrasensitive detection of Ag(+) using electrochemical techniques. This sensing platform for Ag(+) has an extremely low detection limit of 470 fM, which also has satisfactory selectivity. Thus, it can be directly used in drinking water and lake water samples. Moreover, the strategy proposed in this work may have potential to be further developed as a generalized platform for the detection of other analytes by designing new DNA sequences for specific recognition.
We herein report a novel electrochemical method in this paper to monitor protein phosphorylation and to assay protein kinase activity based on Zr(4+) mediated signal transition and rolling circle amplification (RCA). First, substrate peptide immobilized on a gold electrode can be phosphorylated by protein kinase A. Then, Zr(4+) links phosphorylated peptide and DNA primer probe by interacting with the phosphate groups. After the introduction of the padlock probe and phi29 DNA polymerase, RCA is achieved on the surface of the electrode. As the RCA product, a very long DNA strand, may absorb a large number of electrochemical speices, [Ru(NH(3))(6)](3+), via the electrostatic interaction, localizing them onto the electrode surface, initiated by protein kinase A, a sensitive electrochemical method to assay the enzyme activity is proposed. The detection limit of the method is as low as 0.5 unit/mL, which might promise this method as a good candidate for monitoring phosphorylation in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.