We apply recurrent neural networks (RNN) on a new domain, namely recommender systems. Real-life recommender systems often face the problem of having to base recommendations only on short session-based data (e.g. a small sportsware website) instead of long user histories (as in the case of Netflix). In this situation the frequently praised matrix factorization approaches are not accurate. This problem is usually overcome in practice by resorting to item-to-item recommendations, i.e. recommending similar items. We argue that by modeling the whole session, more accurate recommendations can be provided. We therefore propose an RNNbased approach for session-based recommendations. Our approach also considers practical aspects of the task and introduces several modifications to classic RNNs such as a ranking loss function that make it more viable for this specific problem. Experimental results on two data-sets show marked improvements over widely used approaches.
The majority of recommender systems are designed to make recommendations for individual users. However, in some circumstances the items to be selected are not intended for personal usage but for a group; e.g., a DVD could be watched by a group of friends. In order to generate effective recommendations for a group the system must satisfy, as much as possible, the individual preferences of the group's members.This paper analyzes the effectiveness of group recommendations obtained aggregating the individual lists of recommendations produced by a collaborative filtering system. We compare the effectiveness of individual and group recommendation lists using normalized discounted cumulative gain. It is observed that the effectiveness of a group recommendation does not necessarily decrease when the group size grows. Moreover, when individual recommendations are not effective a user could obtain better suggestions looking at the group recommendations. Finally, it is shown that the more alike the users in the group are, the more effective the group recommendations are.
Context aware recommender systems (CARS) adapt the recommendations to the specific situation in which the items will be consumed. In this paper we present a novel contextaware recommendation algorithm that extends Matrix Factorization. We model the interaction of the contextual factors with item ratings introducing additional model parameters. The performed experiments show that the proposed solution provides comparable results to the best, state of the art, and more complex approaches. The proposed solution has the advantage of smaller computational cost and provides the possibility to represent at different granularities the interaction between context and items. We have exploited the proposed model in two recommendation applications: places of interest and music.
In order to generate relevant recommendations, a context-aware recommender system (CARS) not only makes use of user preferences, but also exploits information about the specific contextual situation in which the recommended item will be consumed. For instance, when recommending a holiday destination, a CARS could take into account whether the trip will happen in summer or winter. It is unclear, however, which contextual factors are important and to which degree they influence user ratings. A large amount of data and complex context-aware predictive models must be exploited to understand these relationships. In this paper, we take a new approach for assessing and modeling the relationship between contextual factors and item ratings. Rather than using the traditional approach to data collection, where recommendations are rated with respect to real situations as participants go about their lives as normal, we simulate contextual situations to more easily capture data regarding how the context influences user ratings. To this end, we have designed a methodology whereby users are asked to judge whether a contextual factor (e.g., season) influences the rating given a certain contextual condition (e.g., season is summer). Based on the analyses of these data, we built a contextaware mobile recommender system that utilizes the contextual factors shown to be important. In a subsequent user evaluation, this system was preferred to a similar variant that did not exploit contextual information.keywords Context Á Collaborative filtering Á Recommender system Á Mobile applications Á User study 1 Introduction
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.