What makes a good recommendation or good list of recommendations?
Research into recommender systems has traditionally focused on accuracy, in particular how closely the recommender’s predicted ratings are to the users’ true ratings. However, it has been recognized that other recommendation qualities—such as whether the list of recommendations is diverse and whether it contains novel items—may have a significant impact on the overall quality of a recommender system. Consequently, in recent years, the focus of recommender systems research has shifted to include a wider range of “beyond accuracy” objectives.
In this article, we present a survey of the most discussed beyond-accuracy objectives in recommender systems research: diversity, serendipity, novelty, and coverage. We review the definitions of these objectives and corresponding metrics found in the literature. We also review works that propose optimization strategies for these beyond-accuracy objectives. Since the majority of works focus on one specific objective, we find that it is not clear how the different objectives relate to each other.
Hence, we conduct a set of offline experiments aimed at comparing the performance of different optimization approaches with a view to seeing how they affect objectives other than the ones they are optimizing. We use a set of state-of-the-art recommendation algorithms optimized for recall along with a number of reranking strategies for optimizing the diversity, novelty, and serendipity of the generated recommendations. For each reranking strategy, we measure the effects on the other beyond-accuracy objectives and demonstrate important insights into the correlations between the discussed objectives. For instance, we find that rating-based diversity is positively correlated with novelty, and we demonstrate the positive influence of novelty on recommendation coverage.
In this paper, we present an ongoing research work on the design and development of a generic knowledge-based description framework built upon semantic networks. It aims at integrating and exploiting knowledge on several domains to provide crossdomain item recommendations. More specifically, we propose an approach that automatically extracts information about two different domains, such as architecture and music, which are available in Linked Data repositories. This enables to link concepts in the two domains by means of a weighted directed acyclic graph, and to perform weight spreading on such graph to identify items in the target domain (music artists) that are related to items of the source domain (places of interest).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.