The Escherichia coli D-galactose and D-glucose receptor is an aqueous sugar-binding protein and the first component in the distinct chemosensory and transport pathways for these sugars. Activation of the receptor occurs when the sugar binds and induces a conformational change, which in turn enables docking to specific membrane proteins. Only the structure of the activated receptor containing bound D-glucose is known. To investigate the sugar-induced structural change, we have used 19F NMR to probe 12 sites widely distributed in the receptor molecule. Five sites are tryptophan positions probed by incorporation of 5-fluorotryptophan; the resulting 19F NMR resonances were assigned by site-directed mutagenesis. The other seven sites are phenylalanine positions probed by incorporation of 3-fluorophenylalanine. Sugar binding to the substrate binding cleft was observed to trigger a global structural change detected via 19F NMR frequency shifts at 10 of the 12 labeled sites. Two of the altered sites lie in the substrate binding cleft in van der Waals contact with the bound sugar molecule. The other eight altered sites, specifically two tryptophans and six phenylalanines distributed equally between the two receptor domains, are distant from the cleft and therefore experience allosteric structural changes upon sugar binding. The results are consistent with a model in which multiple secondary structural elements, known to extend between the substrate cleft and the protein surface, undergo shifts in their average positions upon sugar binding to the cleft. Such structural coupling provides a mechanism by which sugar binding to the substrate cleft can cause structural changes at one or more docking sites on the receptor surface.
The periplasmic leucine-binding protein is the primary receptor for the leucine transport system in Escherichia coli. We report here the structure of an open ligand-free form solved by molecular replacement and refined at 1.5-Å resolution. In addition, two closed ligand-bound structures of the same protein are presented, a phenylalanine-bound form at 1.8 Å and a leucine-bound structure at a nominal resolution of 2.4 Å. These structures show the basis of this protein's ligand specificity, as well as illustrating the conformational changes that are associated with ligand binding. Comparison with earlier structures provides further information about solution conformations, as well as the different specificity of the closely related leucine/ isoleucine/valine-binding protein.
The Escherichia coli D-galactose and D-glucose receptor is a two-domain structure with a sugar-binding site at the interface between domains. The structure of the closed cleft containing bound D-glucose has been determined crystallographically, but the open cleft remains to be characterized. The present study illustrates a generalizable approach that is used to detect and analyze both the open- and closed-cleft conformations in solution. A 19F nucleus located inside the cleft is monitored by 19F NMR. When the cleft is occupied by D-glucose, the 19F nucleus is found to be inaccessible to the aqueous paramagnetic probe Gd-EDTA, verifying that the occupied cleft is closed in solution and inaccessible to bulk solvent. When the cleft is empty, the 19F nucleus becomes accessible to the paramagnet such that the distance of closest approach is r less than or equal to 10 A, indicating that the empty cleft opens at least transiently by an angle theta greater than or equal to 18 +/- 3 degrees.
Cellular retinaldehyde-binding protein (CRALBP) is abundant in the retinal pigment epithelium (RPE) and Muller cells of the retina where it is thought to function in retinoid metabolism and visual pigment regeneration. The protein carries 1 1-cis-retinal and/or 1 1-cis-retinol as endogenous ligands in the RPE and retina and mutations in human CRALBP that destroy retinoid binding functionality have been linked to autosomal recessive retinitis pigmentosa. CRALBP is also present in brain without endogenous retinoids, suggesting other ligands and physiological roles exist for the protein.Human recombinant cellular retinaldehyde-binding protein (rCRALBP) has been over expressed as non-fusion and fusion proteins in Escherichia coli from pET3a and pET19b vectors, respectively. The recombinant proteins typically constitute 1 5 2 0 % of the soluble bacterial lysate protein and after purification, yield about 3-8 mg per liter of bacterial culture. Liquid chromatography electrospray mass spectrometry, amino acid analysis, and Edman degradation were used to demonstrate that rCRALBP exhibits the correct primary structure and mass. Circular dichroism, retinoid HPLC, UV-visible absorption spectroscopy, and solution state I9F-NMR were used to characterize the secondary structure and retinoid binding properties of rCRALBP. Human rCRALBP appears virtually identical to bovine retinal CRALBP in terms of secondary structure, thermal stability, and stereoselective retinoid-binding properties. Ligand-dependent conformational changes appear to influence a newly detected difference in the bathochromic shift exhibited by bovine and human CRALBP when complexed with 9-cis-retinal. These recombinant preparations provide valid models for human CRALBP structure-function studies.
We fabricated photonic crystal glucose/galactose binding protein sensing hydrogels for glucose detection using protein conformational change induced volume phase transition.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.