A novel method was developed to prepare three-dimensional structures with desired shapes used as templates for cell transplantation. The produced biomaterials are highly porous with large surface/volume and provide the necessary space for attachment and proliferation of the transplanted cells. The processing technique calls for the formation of a composite material with nonbonded fibers embedded in a matrix followed by thermal treatment and the selective dissolution of the matrix. To evaluate the technique, poly(glycolic acid) (PGA) fiber meshes were bonded using poly(L-lactic acid) (PLLA) as a matrix. The bonded structures were highly porous with values of porosity up to 0.81 and area/volume ratios as high as 0.05 micron-1.
This paper reviews our research in developing novel matrices for cell transplantation using bioresorbable polymers. We focus on applications to liver and cartilage as paradigms for regeneration of metabolic and structural tissue, but review the approach in the context of cell transplantation as a whole. Important engineering issues in the design of successful devices are the surface chemistry and surface microstructure, which influence the ability of the cells to attach, grow, and function normally; the porosity and macroscopic dimensions, which affect the transport of nutrients to the implanted cells; the shape, which may be necessary for proper function in tissues like cartilage; and the choice of implantation site, which may be dictated by the total mass of the implant and which may influence the dimensions of the device by the available vascularity. Studies show that both liver and cartilage cells can be transplanted in small animals using this approach.
These studies investigated the utility of calcium alginate as a biocompatible polymer matrix within which large numbers of chondrocytes could be held successfully in a three-dimensional structure and implanted. Further, the ability of chondrocyte-calcium alginate constructs to engraft and generate new cartilage was examined. Chondrocytes isolated from calf shoulders were mixed with a 1.5% sodium alginate solution to generate cell suspensions with densities of 0, 1.0, 5.0, and 10.0 x 10(6) chondrocytes/ml. The cell suspensions were gelled to create disks that were placed in subcutaneous pockets on the dorsums of nude mice. The alginate concentration and CaCl2 concentration used to make the disks also were varied. A total of 20 mice were implanted with 67 bovine chondrocyte-calcium alginate constructs. Samples with an initial cellular density of at least 5.0 x 10(6) chondrocytes/ml demonstrated gross cartilage formation 12 weeks after implantation. Cartilage formation was observed microscopically in specimens with a cellular density as low as 1.0 x 10(6) chondrocytes/ml. The histoarchitecture of the new cartilage closely resembled that of native cartilage. Cartilage formation was independent of CaCl2 concentration (15 to 100 mM) or alginate concentration (0.5% to 4.0%) used in gel polymerization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.