Ultrasmall biocompatible WO3 - x nanodots with an outstanding X-ray radiation sensitization effect are prepared, and demonstrated to be applicable for multi-modality tumor imaging through computed tomography and photoacoustic imaging (PAI), and effective cancer treatment combining both photothermal therapy and radiation therapy.
Sub-3 nm ultrasmall BiSe nanodots stabilized with bovine serum albumin were successfully synthesized through a reaction of hydroxyethylthioselenide with bismuth chloride in aqueous solution under ambient conditions. These nanodots exhibit a high photothermal conversion efficiency (η = 50.7%) due to their strong broad absorbance in the near-infrared (NIR) window and serve as a nanotheranostic agent for photoacoustic imaging and photothermal cancer therapy. In addition, they also display radioenhancement with a ratio of 6% due to their sensitivity to X-rays, which makes them a potential sensitizer for radiotherapy. These nanodots were also labled with radioactive Tc for quantification of their biodistribution by single-photon-emission computed tomography (SPECT)/computed tomography (CT) imaging. Our work demonstrates the potential of ultrasmall BiSe nanodots in multimodal imaging-guided synergetic radiophotothermal therapy of cancer.
Inorganic nanoparticles as a versatile nanoplatform have been broadly applied in the diagnosis and treatment of cancers due to their inherent superior physicochemical properties (including magnetic, thermal, optical, and catalytic performance) and excellent functions (e.g., imaging, targeted delivery, and controlled release of drugs) through surface functional modification or ingredient dopant. However, in practical biological applications, inorganic nanomaterials are relatively difficult to degrade and excrete, which induces a long residence time in living organisms and thus may cause adverse effects, such as inflammation and tissue cysts. Therefore, the development of biodegradable inorganic nanomaterials is of great significance for their biomedical application. This Review will focus on the recent advances of degradable inorganic nanoparticles for cancer theranostics with highlight on the degradation mechanism, aiming to offer an in-depth understanding of degradation behavior and related biomedical applications. Finally, key challenges and guidelines will be discussed to explore biodegradable inorganic nanomaterials with minimized toxicity issues, facilitating their potential clinical translation in cancer diagnosis and treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.