This work provides a comprehensive review of previous studies concerning the static thermal behaviors of various types of bridges, including beam bridges, arch bridges, cable-stayed, and suspension bridges. Given that thermal behaviors are closely associated with the temperature distribution of bridges, the basis of the heat transfer analysis is briefly introduced first. The studies of the temperature distribution and the temperature actions of each type of bridge are then reviewed from the perspective of theoretical analysis, numerical simulation, experimental tests, and field monitoring. Finally, some existing problems are discussed, and future research topics are recommended.
Varying temperatures significantly affect long-span cable-stayed bridges. However, quantitative studies on their temperature behaviors are limited. Existing studies focus on 2D or 3D models of bridge segments only, exclude cables from heat-transfer analysis, and utilize inaccurate environmental conditions. For the first time, this study comprehensively and accurately investigates the global 3D temperature distribution of long-span cable-stayed bridges by integrating the heat-transfer analysis and field monitoring data. A navigation channel bridge of the Hong Kong‒Zhuhai‒Macao Bridge is used as the testbed. A global 3D refined finite element model of the entire bridge is established. The external thermal boundary conditions of the outer surfaces of the structure are carefully determined based on the real-time ambient temperature, wind, and solar radiation, which are tailored for each surface to reflect the influence of the geometric configuration. The internal thermal boundary conditions of the inner surfaces of the box girder and tower are dependent on the measured ambient temperature, considering the vertical temperature difference of the girder and the uniform temperature inside the tower. Then, the numerical heat-transfer analysis and field monitoring data are integrated to calculate the detailed temperature distribution of the entire bridge in different seasons. Results show that ambient temperature, wind, and solar radiation significantly affect the temperature distribution. For the girder, the vertical temperature difference is significant throughout the year, and the transverse temperature difference is nonnegligible in winter and summer, while the longitudinal temperature difference is trivial. The internal temperature of the tower remains stable owing to the insulation of the concrete. The temperatures of the cables vary from each other, which may cause stress redistribution within the structure. The calculated temperatures are in good agreement with their measured counterparts. The temperature results will be used to calculate the thermal-induced responses in the companion paper in a unified manner.
The temperature action of long-span cable-stayed bridges is complicated because of the high indeterminacy of their structure. Previous studies on the temperature behavior of bridges were either limited by finite sensors, failing to capture the accurate relation between the temperature field and temperature-induced responses, or constrained to a “divide-and-conquer” strategy, requiring considerable manual intervention and regarded as computationally inefficient. This study develops a unified approach to the investigation of thermal behaviors of cable-stayed bridges by integrating the heat-transfer analysis and structural analysis based on the same refined global 3D finite element model. The companion paper (Part I) investigates the temperature distribution, while this paper (Part II) focuses on temperature-induced responses. The temperature distribution data is automatically converted to thermal loads, and thermal elements are changed to structural elements to calculate the temperature-induced responses of the bridge. Results show that the effect of the temperature variation of cables is nonnegligible and should be taken into account during the structural analysis. The longitudinal displacement of the girder and the longitudinal displacement of the tower top are mainly influenced by the average girder temperature, the mid-span deflection and the cable stress are dominated by the cable temperature and average girder temperature, and the stress of the girder is controlled by the vertical temperature difference. The ratio of the thermal stress to the dead load stress of the girder can reach 96%. The calculated displacement and stress of the bridge agree well with the corresponding measurements, consequently verifying the effectiveness of the proposed unified approach to calculating temperature-induced responses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.