We describe the 2017 version of Microsoft's conversational speech recognition system, in which we update our 2016 system with recent developments in neural-network-based acoustic and language modeling to further advance the state of the art on the Switchboard speech recognition task. The system adds a CNN-BLSTM acoustic model to the set of model architectures we combined previously, and includes character-based and dialog session aware LSTM language models in rescoring. For system combination we adopt a twostage approach, whereby subsets of acoustic models are first combined at the senone/frame level, followed by a word-level voting via confusion networks. We also added a confusion network rescoring step after system combination. The resulting system yields a 5.1% word error rate on the 2000 Switchboard evaluation set.
This paper describes a system that generates speaker-annotated transcripts of meetings by using a microphone array and a 360-degree camera. The hallmark of the system is its ability to handle overlapped speech, which has been an unsolved problem in realistic settings for over a decade. We show that this problem can be addressed by using a continuous speech separation approach. In addition, we describe an online audio-visual speaker diarization method that leverages face tracking and identification, sound source localization, speaker identification, and, if available, prior speaker information for robustness to various real world challenges. All components are integrated in a meeting transcription framework called SRD, which stands for "separate, recognize, and diarize". Experimental results using recordings of natural meetings involving up to 11 attendees are reported. The continuous speech separation improves a word error rate (WER) by 16.1% compared with a highly tuned beamformer. When a complete list of meeting attendees is available, the discrepancy between WER and speaker-attributed WER is only 1.0%, indicating accurate wordto-speaker association. This increases marginally to 1.6% when 50% of the attendees are unknown to the system.
We propose to generalize language models for conversational speech recognition to allow them to operate across utterance boundaries and speaker changes, thereby capturing conversation-level phenomena such as adjacency pairs, lexical entrainment, and topical coherence. The model consists of a long-shortterm memory (LSTM) recurrent network that reads the entire word-level history of a conversation, as well as information about turn taking and speaker overlap, in order to predict each next word. The model is applied in a rescoring framework, where the word history prior to the current utterance is approximated with preliminary recognition results. In experiments in the conversational telephone speech domain (Switchboard) we find that such a model gives substantial perplexity reductions over a standard LSTM-LM with utterance scope, as well as improvements in word error rate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.