In many model-scale experiments, geometric scaling is upheld but kinematic and/or dynamic similitude is not because of the difficulty in manufacturing and assembling small models. This paper describes scaling, manufacturing, assembly, and testing of 1/10 th scaled historic masonry materials for one-gravity, pseudo-static, soil-structure testing. Prototype selection, manufacturing limitations, constructability constraints, and testing decisions are presented, alongside details related to model construction. Compressive, tensile, and shear capacities of one-tenth scale prototype values, as well as failure mechanisms, were achieved by adopting traditional brick extrusion and firing methods, in conjunction with modifying mortar products developed for historic restoration. When scaled-masonry structures were subjected to adjacent excavation, damage levels and patterns and levels were consistent with full-scale, field observations.
In recent years, advanced manufacturing techniques, such as high-definition plasma, water jet, and laser cutting, have opened up an opportunity to create a new class of steel connections that rely on intermeshed (i.e. interlocked) components. The main advantage of this type of connection is that they do not require either welding or bolting, which allows faster construction. Although the interest in intermeshed connections has increased in recent years, the mechanical behavior of these connections has not been fully understood. This paper presents a numerical study on the ultimate load capacity failure modes of intermeshed connections under mixed-mode loading. The experimental behavior of the connection components is also investigated through a series of tests. The study considers a recently developed intermeshed connection for beams and columns. The numerical simulations were performed by using a commercially available 3D finite element software package. By considering different types of mixed mode loading, interaction diagrams of axial, shear, and moment capacities of the intermeshed connection were obtained. The results 2 indicated that there exists an intricate interaction among axial, shear, and moment capacities, which arises from the intermeshed configuration of the flanges and web. For each interaction diagram, the corresponding failure mechanism was analyzed. The simulated interaction between axial, shear, and moment capacities were further compared with the provision of the current design codes. While the intermeshed connection studied here showed promise for gravity loading, further study is needed to ensure alignment of the flanges so as to avoid axial and/or flexural failures.
Digital manufacturing has transformed many industries but has had only a limited impact in the construction sector. To capitalize on advanced manufacturing techniques, this paper introduces a radically new connection approach for gravity structural steel frames. The proposed intermeshed steel connection (ISC) exploits robotic abilities to cut structural steel member ends precisely to accelerate deployment and offer better disassembly options over existing approaches. Forces are transferred through common bearing surfaces at multiple contact points, and connections can be secured by small locking pieces. This paper introduces the geometry, manufacturing, and initial analysis and test results of the connection. The paper demonstrates the ability of the connection to (1) be manufactured within current industrial tolerances, (2) be erected and disassembled, and (3) perform at expected design levels.
Reduced-scale masonry testing offers advantages of lower costs and shorter schedules compared to full-scale testing, but achieving results reflective of full-scale behavior requires development and fulfillment of appropriate scaling relationships. In many model-scale experiments, geometric scaling occurs but kinematic and/or dynamic similitude is not fully satisfied. This paper describes the theoretical basis and evolution of the equations necessary to achieve kinematic similitude for soil-structure testing at one-gravity for unreinforced masonry. Critical considerations relate to preventing the soil from being overloaded. By adopting a standard linear relationship of increased soil stiffness with depth, the controlling principle becomes the application of restricted, scaled loads throughout the entirety of the structure-soil system. As such, material strength and stiffness must be scaled accordingly to respond appropriately under the reduced stress. An example is provided for an adjacent excavation experiment with related empirical verification and computational quantification.
He completed postdoctoral research in 2004 on sustainable and bioclimatic houses, from the School of Architecture in Aarhus, Denmark. His research expertise is sustainability in architecture and urban planning and design. He has carried out a great deal of research and technical survey work and has performed several studies in the above-mentioned areas. He has edited many international books and is an active member of many worldwide architectural associations. He has published more than 170 international academic works (papers, research, books, and book chapters) in different languages.Asaad Almssad has more than 30 years of experience in the industry as well as teaching and research, inter alia, Umeå University, Karlstad University and both European and non-European institutions. His research focuses on building structures, materials, sustainable building, and energy efficiency in building systems. His viewpoint of the building and its components is that the orientation of new researchers tends to move the human actions under the building roof toward energy efficiency and healthy living spaces. He has authored and co-authored more than 50 research papers and many books. Now, he is employed as a docent at
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.