A label-free fluorescence aptasensor was studied for adenosine triphosphate (ATP) detection that combines low biosensor toxicity with a simplified preparation process. In this study, the aptamer of the gold nanoparticle@aptamer@carbon quantum dot nanostructure could specifically identify ATP, resulting in the change of the fluorescence signal. In order to analyze the performance of the sensor, the effects of the carbon quantum dot (CQD) concentration and centrifugal rate on the stability of the probe were investigated. The results show that the sensor was superior under the 220 µl CQD volume and 2000 rpm centrifugal rate. Furthermore, the linear relationship between the change of the fluorescence signal and ATP concentration is Y = 359.747 + 0.226X within the volume range of 20 µM–280 µM. The correlation coefficient is 0.98, and the detection limit is 20 µM. No obvious fluorescence change was observed in solutions containing other common ions. On the basis of no pollution and simplicity, this sensor demonstrates great potential as a low-cost diagnostic tool for the detection of various targets, particularly for use in the fields of food safety and biomedical diagnostics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.