Refractive index sensing is a highly sensitive and label-free detection method for molecular binding events. Commercial implementations of biosensing concepts based on plasmon resonances typically require significant external instrumentation such as microscopes and spectrometers. Few concepts exist that are based on direct integration of plasmonic nanostructures with optoelectronic devices for on-chip integration. Here, we present a CMOS-compatible refractive index sensor consisting of a Ge heterostructure PIN diode in combination with a plasmonic nanohole array structured directly into the diode Al contact metallization. In our devices, the photocurrent can be used to detect surface refractive index changes under simple top illumination and without the aid of signal amplification circuitry. Our devices exhibit large sensitivities > 1000 nm per refractive index unit in bulk refractive index sensing and could serve as prototypes to leverage the cost-effectiveness of the CMOS platform for ultra-compact, low-cost biosensors.
We report on the fabrication and electro-optical characterization of SiGeSn multi-quantum well PIN diodes. Two types of PIN diodes, in which two and four quantum wells with well and barrier thicknesses of 10 nm each are sandwiched between B- and Sb-doped Ge-regions, were fabricated as single-mesa devices, using a low-temperature fabrication process. We discuss measurements of the diode characteristics, optical responsivity and room-temperature electroluminescence and compare with theoretical predictions from band structure calculations.
Vertical optofluidic biosensors based on refractive index sensing promise highest sensitivities at smallest area foot-print. Nevertheless, when it comes to large scale fabrication and
Metallic nanoantennas can be used to enhance the efficiency of optical device operation by re-distributing electromagnetic energy. Here, we investigate the effect of a random distribution of disc-shaped Al nanoantennas of different diameters deposited on Ge-on-Si PIN-photodetectors on the wavelength-dependent responsivity. We compare our experimental results to simulations and find that the largest responsivity enhancement is obtained for wavelengths that correspond to energies at or below the bandgap energy of Ge. We argue that this is the result of antenna-mediated scattering of light into waveguide modes within the Ge-on-Si PIN-photodetectors, which is effectively influenced by nanoantenna size, and we discuss a possible application of the concept for integrated biosensing.
Full integration of Ge-based alloys like GeSn with complementary-metal-oxide-semiconductor technology would require the fabrication of p-and n-type doped regions for both planar and tridimensional device architectures which is challenging using in situ doping techniques. In this work, we report on the influence of ex situ doping on the structural, electrical and optical properties of GeSn alloys. n-type doping is realized by P implantation into GeSn alloy layers grown by molecular beam epitaxy (MBE) followed by flash lamp annealing. We show that effective carrier concentration of up to 1×10 19 cm −3 can be achieved without affecting the Sn distribution. Sn segregation at the surface accompanied with an Sn diffusion towards the crystalline/amorphous GeSn interface is found at P fluences higher than 3×10 15 cm −2 and electron concentration of about 4×10 19 cm −3 . The optical and structural properties of ionimplanted GeSn layers are comparable with the in situ doped MBE grown layers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.