Bone has a remarkable potential for self-healing and repair, yet several injury types are non-healing even after surgical or non-surgical treatment. Regenerative therapies that induce bone repair or improve the rate of recovery are being intensely investigated. Here, we probed the potential of bone marrow stem cells (BMSCs) engineered with chemically modified mRNAs (modRNA) encoding the hBMP-2 and VEGF-A gene to therapeutically heal bone. Induction of osteogenesis from modRNA-treated BMSCs was confirmed by expression profiles of osteogenic related markers and the presence of mineralization deposits. To test for therapeutic efficacy, a collagen scaffold inoculated with modRNA-treated BMSCs was explored in an in vivo skull defect model. We show that hBMP-2 and VEGF-A modRNAs synergistically drive osteogenic and angiogenic programs resulting in superior healing properties. This study exploits chemically modified mRNAs, together with biomaterials, as a potential approach for the clinical treatment of bone injury and defects.
BACKGROUND Congenital maxillomandibular syngnathia is an extremely rare disorder characterized by craniofacial malformations and inability to open the mouth adequately, which leads to problems with feeding, swallowing, and breathing as well as temporomandibular joint ankylosis. The main goal of the surgery is to release the ankylosis, establish functioning mandible, and prevent re-fusion. However, surgical procedures for this disease are rarely reported. CASE SUMMARY Here, we report a 7-mo-old girl with bilateral maxillomandibular syngnathia. The patient presented with difficulty in feeding, breathing, sounding, and swallowing and had developmental dysplasia. For treatment, we performed bone isolation by computer-assisted navigation and used silicone to fix the wound surface to prevent refusion of bone. To our knowledge, this is the only syngnathia case in the literature treated using computer-assisted navigation. With the guidance of precise navigation, we were able to minimize operation time by at least one hour, the patient's blood vessels, nerves, and tooth germs were well protected, and excessive bleeding was avoided. After six weeks, the patient showed improvement in mouth opening and no major issues of feeding. CONCLUSION Application of computer-assisted navigation can significantly improve accuracy, effectiveness, and surgical safety in correcting congenital maxillomandibular syngnathia.
Objective To compare the effectiveness, accuracy, and surgical safety of a navigation technique with those of a traditional technique for intraoperative mandibular angle osteotomy. Methods Forty-three postsurgical patients with mandibular angle hypertrophy who were admitted to our Department from June 2014 to June 2017 were retrospectively reviewed. Of these patients, 23 underwent mandibular angle osteotomy using computer-assisted navigation (navigation group), and 20 underwent osteotomy using a traditional technique (traditional group). Postoperative computed tomography images were analyzed by three-dimensional software. Each patient’s facial proportion indices were measured using Mimics 19.0 software, and statistical comparisons and analyses were performed preoperatively and postoperatively. Results The postoperative facial contour morphology and facial proportion were improved in both groups; the navigation group showed greater improvement. The difference between the predicted and postoperative values was smaller in the navigation group than traditional group. The postoperative shape of the mandibular angle sample was similar to the preoperative predicted shape in the navigation group. No complications occurred in the navigation group, but paresthesia occurred in 17% of patients in the traditional group. Conclusions Mandibular angle osteotomy aided with computer-assisted navigation is more effective, accurate, and safe than the traditional technique and represents a promising clinical approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.