Bone has a remarkable potential for self-healing and repair, yet several injury types are non-healing even after surgical or non-surgical treatment. Regenerative therapies that induce bone repair or improve the rate of recovery are being intensely investigated. Here, we probed the potential of bone marrow stem cells (BMSCs) engineered with chemically modified mRNAs (modRNA) encoding the hBMP-2 and VEGF-A gene to therapeutically heal bone. Induction of osteogenesis from modRNA-treated BMSCs was confirmed by expression profiles of osteogenic related markers and the presence of mineralization deposits. To test for therapeutic efficacy, a collagen scaffold inoculated with modRNA-treated BMSCs was explored in an in vivo skull defect model. We show that hBMP-2 and VEGF-A modRNAs synergistically drive osteogenic and angiogenic programs resulting in superior healing properties. This study exploits chemically modified mRNAs, together with biomaterials, as a potential approach for the clinical treatment of bone injury and defects.
Ischemia−reperfusion (I/R) injury leads to a low success rate of skin flap transplantation in reconstruction surgery, thus requiring development of new treatments. Necroptosis and apoptosis pathways, along with overexpression of reactive oxygen species and pro-inflammatory factors in skin flap transplantation, are deemed as potential therapeutic targets. This study provides a paradigm for nanozyme-mediated microenvironment maintenance to improve the survival rate of the transplanted skin flap. Prussian blue nanozyme (PBzyme) with multiple intrinsic biological activities was constructed and selected for this proof-of-concept study. The prepared PBzyme shows anti-inflammatory, antiapoptotic, antinecroptotic, and antioxidant activities in both in vitro and in vivo models of I/R injured skin flaps. The multiple inhibitory effects of PBzyme maintained a normal microenvironment and thus significantly promoted the survival rate of the I/R injured skin flap (from 37.21 ± 8.205% to 79.61 ± 7.5%). Of note, PBzyme regulated the expression of the characteristic signal molecules of necroptosis, including Rip 1, Rip 3, and pMLKL, indicating that PBzyme may be a therapeutic agent for necroptosis-related diseases. This study shows great prospects for clinical application of PBzyme in the treatment of skin flaps via local administration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.