Thermosensitive genic male sterile (TGMS) rice line has made great economical contributions in rice production. However, the fertility of TGMS rice line during hybrid seed production is frequently influenced by low temperature, thus leading to its fertility/sterility alteration and hybrid seed production failure. To understand the mechanism of fertility alternation under low temperature inducement, the extracted proteins from young panicles of two TGMS rice lines at the fertility alternation sensitivity stage were analyzed by 2DE. Eighty-three protein spots were found to be significantly changed in abundance, and identified by MALDI-TOF-TOF MS. The identified proteins were involved in 16 metabolic pathways and cellular processes. The young panicles of TGMS rice line Zhu 1S possessed the lower ROS-scavenging, indole-3-acetic acid level, soluble protein, and sugar contents as well as the faster anther wall disintegration than those of TGMS rice line Zhun S. All these major differences might result in that the former is more stable in fertility than the latter. Based on the majority of the 83 identified proteins, together with microstructural, physiological, and biochemical results, a possible fertile alteration mechanism in the young panicles of TGMS rice line under low temperature inducement was proposed. Such a result will help us in breeding TGMS rice lines and production of hybrid seed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.