Service Email Alerting click here. top right corner of the article or Receive free email alerts when new articles cite this article-sign up in the box at the http://genome.cshlp.org/subscriptions
DNA methylation analysis by sequencing is becoming increasingly popular, yielding methylomes at single-base pair and single-molecule resolution. It has tremendous potential for cell-type heterogeneity analysis using intrinsic read-level information. Although diverse deconvolution methods were developed to infer cell-type composition based on bulk sequencing-based methylomes, systematic evaluation has not been performed yet. Here, we thoroughly benchmark six previously published methods: Bayesian epiallele detection, DXM, PRISM, csmFinder+coMethy, ClubCpG and MethylPurify, together with two array-based methods, MeDeCom and Houseman, as a comparison group. Sequencing-based deconvolution methods consist of two main steps, informative region selection and cell-type composition estimation, thus each was individually assessed. With this elaborate evaluation, we aimed to establish which method achieves the highest performance in different scenarios of synthetic bulk samples. We found that cell-type deconvolution performance is influenced by different factors depending on the number of cell types within the mixture. Finally, we propose a best-practice deconvolution strategy for sequencing data and point out limitations that need to be handled. Array-based methods—both reference-based and reference-free—generally outperformed sequencing-based methods, despite the absence of read-level information. This implies that the current sequencing-based methods still struggle with correctly identifying cell-type-specific signals and eliminating confounding methylation patterns, which needs to be handled in future studies.
Targeted spatial transcriptomics methods capture the topology of cell types and states in tissues at single cell- and subcellular resolution by measuring the expression of a predefined set of genes. The selection of an optimal set of probed genes is crucial for capturing and interpreting the spatial signals present in a tissue. However, current selections often rely on marker genes, precluding them from detecting continuous spatial signals or novel states. We present Spapros, an end-to-end probe set selection pipeline that optimizes both probe set specificity for cell type identification and within-cell-type expression variation to resolve spatially distinct populations while taking into account prior knowledge, as well as probe design and expression constraints. To facilitate data analysis and interpretation, Spapros also provides rules for cell type identification. We evaluated Spapros by selecting probes on 6 different data sets and built an evaluation pipeline with 12 quality metrics to find that Spapros outperforms other selection approaches in both cell type recovery and recovering expression variation beyond cell types. Furthermore, we used Spapros to design a SCRINSHOT experiment of adult lung tissue to demonstrate how probes selected with Spapros identify cell types of interest and detect spatial variation even within cell types. Spapros enables optimal probe set selection, probe set evaluation, and probe design, as a freely available Python package.
This paper describes the implementation of semi-structured deep distributional regression, a flexible framework to learn distributions based on a combination of additive regression models and deep neural networks. deepregression is implemented in both R and Python, using the deep learning libraries TensorFlow and PyTorch, respectively. The implementation consists of (1) a modular neural network building system for the combination of various statistical and deep learning approaches, (2) an orthogonalization cell to allow for an interpretable combination of different subnetworks as well as (3) pre-processing steps necessary to initialize such models. The software package allows to define models in a user-friendly manner using distribution definitions via a formula environment that is inspired by classical statistical model frameworks such as mgcv. The packages' modular design and functionality provides a unique resource for rapid and reproducible prototyping of complex statistical and deep learning models while simultaneously retaining the indispensable interpretability of classical statistical models.
In this paper we describe the implementation of semi-structured deep distributional regression, a flexible framework to learn conditional distributions based on the combination of additive regression models and deep networks. Our implementation encompasses (1) a modular neural network building system based on the deep learning library TensorFlow for the fusion of various statistical and deep learning approaches, (2) an orthogonalization cell to allow for an interpretable combination of different subnetworks, as well as (3) pre-processing steps necessary to set up such models. The software package allows to define models in a user-friendly manner via a formula interface that is inspired by classical statistical model frameworks such as mgcv. The package's modular design and functionality provides a unique resource for both scalable estimation of complex statistical models and the combination of approaches from deep learning and statistics. This allows for state-of-the-art predictive performance while simultaneously retaining the indispensable interpretability of classical statistical models.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.