New neurons are continuously added to the hippocampus of adult mammals. Their survival and integration into the circuitry are highly dependent on experience. Here we show that mushroom spine formation in newborn granule cells was modulated by experience and that dendritic segments in different areas of the molecular layer were differentially regulated. Specifically, spines of new neurons in the outer molecular layer of the dentate gyrus were more readily influenced by non-spatial features in the living environment. Those in the middle molecular layer were more likely to be influenced by the size of the living environment. Therefore, the activity of cortical inputs into newborn granule cells may be reflected in the formation of mushroom spines in different dendritic segments in the molecular layer.
The development of a functional germline is essential for species propagation. The nanos (nos) gene plays an evolutionarily conserved role in germline development and is also essential for abdominal patterning in Drosophila. A small fraction of nos mRNA is localized to the germ plasm at the posterior pole of the Drosophila embryo, where it becomes incorporated into the germ cells. Germ plasm associated nos mRNA is translated to produce a gradient of Nos protein that patterns the abdomen, whereas the remaining unlocalized RNA is translationally repressed to allow anterior development. Using transgenes that compromise nos mRNA localization and translational regulation, we show that wild-type body patterning can ensue without nos mRNA localization provided that nos translation is properly modulated. In contrast, localization of nos to the germ plasm, but not translational regulation, is essential for nos function in the developing germ cells. We propose that an imperative for nos localization in producing a functional germline has preserved an inefficient localization mechanism.
Intravenous hydrodynamic injections into the liver and skeletal muscle have increased the efficacy of naked DNA delivery to a level that makes therapeutically relevant gene transfer attainable. Although there are no concerns about the immunogenicity of the delivered DNA itself, transgene products that are foreign to the host can trigger an immune response and hamper the therapeutic effect. Our goal was to determine whether and to what extent some known preventive measures are applicable to these delivery methods in order to achieve longterm expression of foreign proteins in immunocompetent mice. We designed plasmid DNA vectors that expressed a marker gene under the control of either a ubiquitous or a tissue-specific promoter. We also included microRNA (miR) target sites in the transcripts in order to silence expression in antigen-presenting cells (APCs). The constructs were delivered either into muscle or liver, using outbred ICR and inbred C57BL=6 mice. The data suggest that firefly luciferase, a potent immunogen, triggered a uniform immune response only in outbred ICR mice, and only when expressed from a ubiquitous promoter. This response could not be prevented by including APC-specific miR target sites in the transcript. In contrast, the probability of immune rejection in ICR mice could be significantly diminished by using tissue-specific promoters, and under these circumstances, the silencing of transgene expression in APCs did confer some benefits. After a single hydrodynamic injection, inbred mice did not reject luciferase under any of the tested conditions for at least 8 weeks. To test whether they became tolerized, they were challenged with a second boost of a cytomegalovirus promoter-driven luciferase construct. This triggered a strong immune response, suggesting that luciferase-reactive cells from the animals' T and B cell repertoire had not been eliminated. This secondary reaction could not be prevented by silencing expression in APCs. In conclusion, for the clinical application of hydrodynamic naked DNA delivery the use of tissue-specific promoters in combination with silencing expression in APCs will increase the probability of long-term expression, but the most desirable outcome, the establishment of transgene tolerance, appears unlikely to be achieved by any of these measures.
New neurons are continuously added to the hippocampus of adult mammals. Their survival and integration into the circuitry are highly dependent on experience. Here we show that mushroom spine formation in newborn granule cells was modulated by experience and that dendritic segments in different areas of the molecular layer were differentially regulated. Specifically, spines of new neurons in the outer molecular layer of the dentate gyrus were more readily influenced by non-spatial features in the living environment. Those in the middle molecular layer were more likely to be influenced by the size of the living environment. Therefore, the activity of cortical inputs into newborn granule cells may be reflected in the formation of mushroom spines in different dendritic segments in the molecular layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.