We report the preparation of gold nanoparticles (AuNPs) functionalized with the peptide-toxin conantokin-G and their selective binding to N-methyl-d-aspartate (NMDA) receptors recombinantly expressed by transfected HEK 293 cells. The AuNPs are passivated with a mixed self-assembled monolayer of ω-carboxy- and ω-amino-polyethylene glycol (PEG) thiols. We compare two different passivation systems: the alkyl-PEG600 system is characterized by a C(11)-alkyl chain between the thiol group and the PEG segment, whereas the PEG3000 system lacks this alkyl-chain. We show that only the alkyl-PEG600 passivation system allows selective conjugation of cysteine-terminated peptides to the periphery of the passivation layer via a heterobifunctional linker strategy. In contrast, using the PEG3000 passivation system, peptides are immobilized both on the passivation layer and directly on the gold surface via concurrent place-exchange reaction. We therefore recommend the use of the alkyl-PEG600 system to precisely control the number of immobilized peptides on AuNPs. In fact, we show that the number of conjugated peptides per particle can be varied with good control simply by varying the composition of the self-assembled monolayer. Finally, we demonstrate that conjugation of the conantokin-G peptide to the solvent-exposed interface of the passivation layer results in maximal binding interaction between the peptide-functionalized AuNPs and the targeted NMDA receptors on the cell surface. Conantokin G-coupled AuNP may be used to spatially restrict NMDA-receptor-blockade on neuronal surfaces.
A trinuclear gold(I)-oxo complex, [(Ph3PAu)3O]BF4, serves as the catalyst for the stereocontrolled synthesis of 2-hydroxy-3,6-dihydropyrans from propargyl vinyl ethers. Importantly, the rearrangement proceeds with excellent diastereoselectivity, and the rearrangement of chiral nonracemic propargyl vinyl ethers proceeds with excellent chirality transfer to furnish enantioenriched pyrans. Additionally, the reaction is amenable to the synthesis of spiroketals from appropriately functionalized precursors. In this case, from a linear precursor, in a single step, the bicyclic spiroketal framework is established with complete stereocontrol over three centers and an alkene functional group in the product.
We present a fluorescence-based assay for the characterization of functionalized gold nanoparticles (AuNPs) capped with a self-assembled monolayer of mixed thiols derived from poly(ethylene glycol) (PEG). These water-soluble AuNPs carry primary amino groups at the solvent-exposed interface, which can be used for further conjugation of biologically active molecules. The reported assay allows quantification of the average number of functionalizable amino groups per particle (N(NH(2))) with a relative uncertainty below or equal to +/-14% (95% confidence interval), thus providing essential information for the successive derivatization of the AuNPs. Here, a fluorescently labeled derivative of peptide-neurotoxin conantokin-G was coupled to the amino groups of the particle ligand shell via a flexible linker. We quantitatively determined the average number of peptides per particle (N(pept)) and the yield of the two-step conjugation strategy. AuNPs carrying 50-70 copies of the peptide were obtained. In addition, we have gained insights into the deterioration of the self-assembled monolayer due to thiol desorption with time. Under ordinary storage conditions in solution and at room temperature, a decrease in N(NH(2)) between 48% and 75% could be observed at the end of the period of investigation (42-56 days). Slow desorption of the conjugated peptides upon storage was also observed and quantified ( approximately 25% in 14 days).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.