We hypothesized that biodiversity improves ecosystem functioning and services such as nutrient cycling because of increased complementarity. We examined N canopy budgets of 27 Central European forests of varying dominant tree species, stand density, and tree * Corresponding author: M. and shrub species diversity (Shannon index) in three study regions by quantifying bulk and fine particulate dry deposition and dissolved below canopy N fluxes. Average regional canopy N retention ranged from 16% to 51%, because of differences in the N status of the ecosystems. Canopy N budgets of coniferous forests differed from deciduous forest which we attribute to differences in biogeochemical N cycling, tree functional traits and canopy surface area. The canopy budgets of N were related to the Shannon index which explained 14% of the variance of the canopy budgets of N, suggesting complementary aboveground N use of trees and diverse understorey vegetation. The relationship between plant diversity and canopy N retention varied among regional site conditions and forest types. Our results suggest that the traditional view of belowground complementarity of nutrient uptake by roots in diverse plant communities can be transferred to foliar uptake in forest canopies.
Published by Copernicus Publications on behalf of the European Geosciences Union.L. Thieme et al.: Dissolved organic matter characteristics of deciduous and coniferous forests uous and coniferous forests. Forest management intensity, mainly determined by biomass extraction, contribution of species, which are not site-adapted, and deadwood mass, did not influence DOC concentrations, DOM composition and properties significantly.
Abstract. We present the first investigation of the composition of dissolved organic matter (DOM) compared to total organic matter (TOM, consisting of DOM, < 0.45 µm and particulate organic matter 0.45 µm < POM < 500 µm) in throughfall, stemflow and forest floor leachate of common beech (Fagus sylvatica L.) and Norway spruce (Picea abies (L.) H. Karst.) forests using solid-state 13 C nuclear magnetic resonance (NMR) spectroscopy. We hypothesized that the composition and properties of organic matter (OM) in forest ecosystem water samples differ between DOM and TOM and between the two tree species.The 13 C NMR results, derived from 21 samples, point to pronounced differences in the composition of DOM and TOM in throughfall solution at the beech sites, with TOM exhibiting higher relative intensities for the alkyl C region, which represents aliphatic C from less decomposed organic material compared to DOM. Furthermore, TOM shows lower intensities for lignin-derived and aromatic C of the aryl C region resulting in lower aromaticity indices and a diminished degree of humification. Across the ecosystem compartments, differences in the structural composition of DOM and TOM under beech lessened in the following order: throughfall > stemflow ≈ forest floor leachate.In contrast to the broadleaved sites, differences between DOM and TOM in throughfall solution under spruce were less pronounced and spectra were, overall, dominated by the alkyl C region, representing aliphatic C. Explanations of the reported results might be substantiated in differences in tree species-specific structural effects, leaching characteristics or differences in the microbial community of the tree species' phyllosphere and cortisphere. However, the fact that throughfall DOM under beech showed the highest intensities of recalcitrant aromatic and phenolic C among all samples analysed likely points to a high allelopathic potential of beech trees negatively affecting other organisms and hence ecosystem processes and functions.
Abstract. Freezing can affect concentrations and spectroscopic properties of dissolved organic matter (DOM) in water samples. Nevertheless, water samples are regularly frozen for sample preservation. In this study we tested the effect of different freezing methods (standard freezing at −18 °C and fast-freezing with liquid nitrogen) on DOM concentrations measured as organic carbon (DOC) concentrations and on spectroscopic properties of DOM from different terrestrial ecosystems (forest and grassland). Fresh and differently frozen throughfall, stemflow, litter leachate and soil solution samples were analyzed for DOC concentrations, UV-vis absorption and fluorescence excitation–emission matrices combined with parallel factor analysis (PARAFAC). Fast-freezing with liquid nitrogen prevented a significant decrease of DOC concentrations observed after freezing at −18 °C. Nonetheless, the share of PARAFAC components 1 (EXmax < 250 nm (340 nm), EXmax: 480 nm) and 2 (EXmax: 335 nm, EXmax: 408 nm) to total fluorescence and the humification index (HIX) decreased after both freezing treatments, while the shares of component 3 (EXmax: < 250 nm (305 nm), EXmax: 438 nm) as well as SUVA254 increased. The contribution of PARAFAC component 4 (EXmax: 280 nm, EXmax: 328 nm) to total fluorescence was not affected by freezing. We recommend fast-freezing with liquid nitrogen for preservation of bulk DOC concentrations of samples from terrestrial sources, whereas immediate measuring is preferable to preserve spectroscopic properties of DOM.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.