Prochloraz (Pro) controlled-release nanoparticles (NPs) based on bimodal mesoporous silica (BMMs) with redox and pH dual responses were successfully prepared in this study. BMMs was modified by a silane coupling agent containing a disulfide bond, and β-cyclodextrin (β-CD) was grafted on the surface of the NPs through host–guest interaction. Pro was encapsulated into the pores of nanoparticles by physical adsorption. NPs had a spherical structure, and their average diameter was 546.4 ± 3.0 nm as measured by dynamic light scattering. The loading rate of Pro was 28.3%, and it achieved excellent pH/redox dual-responsive release performance under acidic conditions. Foliage adhesion tests on tomato leaves showed that the NPs had good adhesion properties compared to the commercial formulation. Owing to the protection of the nanocarrier, NPs became more stable under ultraviolet light and high temperature, which improves the efficient utilization of Pro. Biological activity tests showed that the NPs exhibited effective antifungal activity, and the benign biosafety of the nanocarrier was also observed through toxicology tests on cell viability and the growth of Escherichiacoli (E. coli). This work provides a promising approach to improving the efficient utilization of pesticides and reducing environmental pollution.
Integrating pesticides and mineral elements into a multi-functional stimuli-responsive nanocarrier can have a synergistic effect on protecting plants from pesticides and the supply of nutrients. Herein, a pH dual-responsive multifunctional nanosystem regulated by coordination bonding using bimodal mesoporous silica (BMMs) as a carrier and coordination complexes of ferric ion and polymethacrylic acid (PMAA/Fe3+) as the gatekeeper was constructed to deliver prochloraz (Pro) for the smart treatment of wilt disease (Pro@BMMs−PMAA/Fe3+). The loading capacity of Pro@BMMs−PMAA/Fe3+ nanoparticles (Nps) was 24.0% and the “PMMA/Fe3+” complexes deposited on the BMMs surface could effectively protect Pro against photodegradation. The nanoparticles possessed an excellent pH dual-responsive release behavior and better inhibition efficacy against Rhizoctonia solani. Fluorescence tracking experiments showed that Nps could be taken up and transported in fungi and plants, implying that non-systemic pesticides could be successfully delivered into target organisms. Furthermore, BMMS−PMAA/Fe3+ nanocarriers could effectively promote the growth of crop seedlings and had no obvious toxicological influence on the cell viability and the growth of bacteria. This study provides a novel strategy for enhancing plant protection against diseases and reducing the risk to the environment.
In the present research, photo-responsive controlled-release hexaconazole (Hex) nanoparticles (Nps) were successfully prepared with azobenzene (Azo)-modified bimodal mesoporous silica (BMMs), in which β-cyclodextrin (β-CD) was capped onto the BMMs-Azo surface via host–guest interactions (Hex@BMMs/Azo/β-CD). Scanning electron microscopy (SEM) confirmed that the nanoparticles had a spherical structure, and their average diameter determined by dynamic light scattering (DLS) was found to be 387.2 ± 3.8 nm. X-ray powder-diffraction analysis and N2-adsorption measurements indicated that Hex was loaded into the pores of the mesoporous structure, but the structure of the mesoporous composite was not destroyed. The loading capacity of Hex@BMMs/Azo/β-CD nanoparticles for Hex was approximately 27.3%. Elemental components of the nanoparticles were characterized by X-ray photoelectron spectroscopy (XPS) and electron dispersive spectroscopy (EDS). Ultraviolet–visible-light (UV–Vis) absorption spectroscopy tests showed that the azophenyl group in BMMs-Azo undergoes effective and reversible cis-trans isomerization under UV–Vis irradiation. Hex@BMMs/Azo/β-CD Nps exhibited excellent light-sensitive controlled-release performance. The release of Hex was much higher under UV irradiation than that in the dark, which could be demonstrated by the bioactivity test. The nanoparticles also displayed excellent pH-responsive properties, and the sustained-release curves were described by the Ritger–Peppas release kinetic model. BMMs nanocarriers had good biological safety and provided a basis for the development of sustainable agriculture in the future.
Integrating toxic fungicide into a functional stimuli-responsive nanosystem can effectively improve the fungus control specificity and reduce the effect on non-target organisms. We report here a redox and cellulase dual-responsive multifunctional nanoparticle based on bimodal mesoporous silica (BMMs) to deliver prochloraz (Pro) for the smart management of wilt disease (Pro-AC-SS-BMMs, known as P-ASB). The surface of the nanocarrier was modified with an aminosilane coupling agent, and Pro was encapsulated by physical adsorption using 2,2′-dithiodiacetic acid as a smart bridge and disulfide (SS) cross-linked aminocellulose (AC) as gatekeepers. P-ASB nanoparticles (NPs) had a spherical structure, and the size was 531.2 ± 4.9 nm. The loading rate of Pro was 28.5%, and the NPs possessed excellent redox/cellulase dual-responsive release characteristics in the presence of glutathione (GSH) and cellulase. The nanocarrier could effectively protect Pro against photodegradation and had better foliar wettability than the Pro technical. Fluorescence tracer results showed that the nanocarriers were taken up and activated by the mycelium. P-ASB NPs had better control efficacy against Rhizoctonia solani and had no significant toxicity to cells and bacteria. This study provides a new strategy for enhancing the environmental protection and promoting the development of green agriculture.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.