Abstract:The theoretical design method of enhanced sensitivity fiber grating (FBG) strain sensors was given, and moreover high qualified strain sensors were developed and fabricated, whose sensing properties were good for practical applications. The strain sensor with cylindrical shell encapsulation contained three tubular structures, due to the uneven surface structure, in the area of the strain concentration, improving the sensitivity. It could achieve the embedment strain measurement and surface measurement and had the advantages of the easy installation. The good agreement was obtained between the measurements and theoretical simulation results. After each calibration test, twenty-four FBG strain sensors and six FBG temperature compensation sensors have been installed on the undersurface of the box girder of Diaoshuiyan bridge in Yongtaiwen highway. Finally, we built up a long-term structure health system for the highway bridge.
We report an extrinsic Fabry-Perot interferometer-fiber Bragg grating (EFPI-FBG) hybrid sensor in this letter. The interferometric cavity of the proposed hybrid sensor is composed of a glass capillary tube, a section of single-mode fiber, and a section of single-mode metal fiber with one FBG. The FBG processed by high-temperature annealing is used to measure temperature, whereas the fiber EFPI is adopted for strain measurement. One of the two aligned fibers is free along the axial direction, which is different from the traditional structure that both the fibers are fixed to glass capillary tube. Experimental results show that the sensor can measure high temperature and large strain simultaneously. The measuring range of temperature and strain for the hybrid sensor is up to 500 °C and 10,000 μ ԑ, respectively. Effective temperature compensation of the hybrid sensor is realized, too.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.