This work presents the long-term determination accuracy study of ICP-QMS for rare earth elements (REEs) in geological matrices. Following high-pressure closed acidic decomposition, REEs are measured repetitively across seven months by ICP-QMS. Under optimum experimental conditions (including spray chamber temperature, gas flow rate, sampling depth, etc.), the REE contents in geological standard materials from basic (basalt BCR-2 and BE-N) to intermediate (andesite AGV-2) and up to acidic (granite GSR-1) show good agreement with the certified values, giving relative errors below 10%. Here, the influence of two storage materials (perfluoroalkoxy PFA and polypropylene PP) on the long-term determination accuracy of REEs has also been monitored. It is found that the relative errors of REEs using a PFA container range from −6.6 to 6.3% (RSDs < 6.0%), while that using a PP container are within −4.0 to 3.9% (RSDs < 4.6%). By using PP material as a solution storage container, the accuracy of REEs quantification in a series of real geological samples are checked, showing the RSDs of less than 5.0%. This work first clarifies the long-term stability of REEs quantification by ICP-QMS covering two types of storage materials, confirming the reasonability of PP material as a daily storage container in terms of higher data precision and lower cost.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.