SummaryAutophagy is a major and conserved pathway for delivering and recycling unwanted proteins or damaged organelles to be degraded in the vacuoles. AuTophaGy‐related (ATG) protein 18a has been established as one of the essential components for autophagy occurrence in Arabidopsis thaliana. We previously cloned the ATG18a homolog from Malus domestica (MdATG18a) and monitored its responsiveness to various abiotic stresses at the transcriptional level. However, it is still unclear what its function is under abiotic stress in apple. Here, we found that heterologous expression of MdATG18a in tomato plants markedly enhanced their tolerance to drought. Overexpression (OE) of that gene in apple plants improved their drought tolerance as well. Under drought conditions, the photosynthesis rate and antioxidant capacity were significantly elevated in OE lines when compared with the untransformed wild type (WT). Transcript levels of other important apple ATG genes were more strongly up‐regulated in transgenic MdATG18a OE lines than in the WT. The percentage of insoluble protein in proportion to total protein was lower and less oxidized protein accumulated in the OE lines than in the WT under drought stress. This was probably due to more autophagosomes being formed in the former. These results demonstrate that overexpression of MdATG18a in apple plants enhances their tolerance to drought stress, probably because of greater autophagosome production and a higher frequency of autophagy. Those processes help degrade protein aggregation and limit the oxidation damage, thereby suggesting that autophagy plays important roles in the drought response.
Melatonin regulates growth in many plants; however, the mechanism remains unclear. In this study, exogenous melatonin feeding resulted in both promotional (≤10 μm) and inhibitory (≥100 μm) effects on maize seedling growth. Initial analyses suggested positive correlations between the amount of melatonin and sucrose synthesis and hydrolysis-related gene expression, enzyme activities, and sucrose metabolites. However, assays of photosynthetic rate, hexokinase (HxK) activity, expression of photosynthetic marker genes, and HxK-related genes showed opposite effects under 10 μm (positive) and 100 μm (negative) melatonin treatments. Similarly, 10 μm melatonin accelerated starch catabolism at night, whereas 100 μm melatonin significantly decreased this process and led to starch accumulation in photosynthetic tissues. Furthermore, expression analysis of genes related to sucrose phloem loading resulted in a slight upregulation of sucrose transporters (SUT1 and SUT2) when seedlings were induced with 10 μm melatonin, while treatment with 100 μm melatonin resulted in significant downregulation of these sucrose transporter genes (SUT1 and SUT2), as well as tie-dyed2 (Tdy2) and sucrose export defective 1. Taken together, these results suggest that low doses of melatonin benefit maize seedling growth by promoting sugar metabolism, photosynthesis, and sucrose phloem loading. Conversely, high doses of melatonin inhibit seedling growth by inducing the excessive accumulation of sucrose, hexose and starch, suppressing photosynthesis and sucrose phloem loading.
Nitrogen (N) availability is an essential factor for plant growth. Recycling and remobilization of N have strong impacts on crop yield and quality under N deficiency. Autophagy is a critical nutrient-recycling process that facilitates remobilization under starvation. We previously showed that an important AuTophaGy (ATG) protein from apple, MdATG18a, has a positive role in drought tolerance. In this study, we explored its biological role in response to low-N. Overexpression of MdATG18a in both Arabidopsis and apple improved tolerance to N-depletion and caused a greater accumulation of anthocyanin. The increased anthocyanin concentration in transgenic apple was possibly due to up-regulating flavonoid biosynthetic and regulatory genes (MdCHI, MdCHS, MdANS, MdPAL, MdUFGT, and MdMYB1) and higher soluble sugars concentration. MdATG18a overexpression enhanced starch degradation with up-regulating amylase gene (MdAM1) and up-regulated sugar metabolism related genes (MdSS1, MdHXKs, MdFK1, and MdNINVs). Furthermore, MdATG18a functioned in nitrate uptake and assimilation by up-regulating nitrate reductase MdNIA2 and 3 high-affinity nitrate transporters MdNRT2.1/2.4/2.5. MdATG18a overexpression also elevated other important MdATG genes expression and autophagosomes formation under N-depletion, which play key contributions to above changes. Together, these results demonstrate that overexpression of MdATG18a enhances tolerance to N-deficiencies and plays positive roles in anthocyanin biosynthesis through greater autophagic activity.
High temperature is an abiotic stress factor that threatens plant growth and development. Autophagy in response to heat stress involves the selective removal of heat-induced protein complexes. Previously, we showed that a crucial autophagy protein from apple, MdATG18a, has a positive effect on drought tolerance. In the present study, we treated transgenic apple (Malus domestica) plants overexpressing MdATG18a with high temperature and found that autophagy protected them from heat stress. Overexpression of MdATG18a in apple enhanced antioxidase activity and contributed to the production of increased beneficial antioxidants under heat stress. Transgenic apple plants exhibited higher photosynthetic capacity, as shown by the rate of CO 2 assimilation, the maximum photochemical efficiency of photosystem II (PSII), the effective quantum yield, and the electron transport rates in photosystems I and II (PSI and PSII, respectively). We also detected elevated autophagic activity and reduced damage to chloroplasts in transgenic plants compared to WT plants. In addition, the transcriptional activities of several HSP genes were increased in transgenic apple plants. In summary, we propose that autophagy plays a critical role in basal thermotolerance in apple, primarily through a combination of enhanced antioxidant activity and reduced chloroplast damage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.