Melatonin has been reported to promote plant growth and development. Our experiments with Arabidopsis thaliana showed that exogenous applications of this molecule mediated invertase inhibitor (C/VIF)-regulated invertase activity and enhanced sucrose metabolism. Hexoses were accumulated in response to elevated activities by cell wall invertase (CWI) and vacuolar invertase (VI). Analyses of sugar metabolism-related genes revealed differential expression during plant development that was modulated by melatonin. In particular, C/VIF1 and C/VIF2 were strongly down-regulated by exogenous feeding. We also found the elevated CWI activity in melatonin-treated Arabidopsis improved the factors (cellulose, xylose, and galactose) for cell wall reinforcement and callose deposition during Pseudomonas syringae pv. tomato DC3000 infection, therefore, partially induced the pathogen resistance. However, CWI did not involve in salicylic acid (SA)-regulated defense pathway. Taken together, this study reveals that melatonin plays an important role in invertase-related carbohydrate metabolism, plant growth, and pathogen defense.
Melatonin regulates growth in many plants; however, the mechanism remains unclear. In this study, exogenous melatonin feeding resulted in both promotional (≤10 μm) and inhibitory (≥100 μm) effects on maize seedling growth. Initial analyses suggested positive correlations between the amount of melatonin and sucrose synthesis and hydrolysis-related gene expression, enzyme activities, and sucrose metabolites. However, assays of photosynthetic rate, hexokinase (HxK) activity, expression of photosynthetic marker genes, and HxK-related genes showed opposite effects under 10 μm (positive) and 100 μm (negative) melatonin treatments. Similarly, 10 μm melatonin accelerated starch catabolism at night, whereas 100 μm melatonin significantly decreased this process and led to starch accumulation in photosynthetic tissues. Furthermore, expression analysis of genes related to sucrose phloem loading resulted in a slight upregulation of sucrose transporters (SUT1 and SUT2) when seedlings were induced with 10 μm melatonin, while treatment with 100 μm melatonin resulted in significant downregulation of these sucrose transporter genes (SUT1 and SUT2), as well as tie-dyed2 (Tdy2) and sucrose export defective 1. Taken together, these results suggest that low doses of melatonin benefit maize seedling growth by promoting sugar metabolism, photosynthesis, and sucrose phloem loading. Conversely, high doses of melatonin inhibit seedling growth by inducing the excessive accumulation of sucrose, hexose and starch, suppressing photosynthesis and sucrose phloem loading.
Helices are amongst the most common structures in nature and in some cases, such as tethered plant tendrils, a more complex but related shape, the hemihelix forms. In its simplest form it consists of two helices of opposite chirality joined by a perversion. A recent, simple experiment using elastomer strips reveals that hemihelices with multiple reversals of chirality can also occur, a richness not anticipated by existing analyses. Here, we show through analysis and experiments that the transition from a helical to a hemihelical shape, as well as the number of perversions, depends on the height to width ratio of the strip's cross-section. Our findings provides the basis for the deterministic manufacture of a variety of complex three-dimensional shapes from flat strips.
We measure the thermal fluctuation of the internal segments of a piece of DNA confined in a nanochannel about 50100 nm wide. This local thermodynamic property is key to accurate measurement of distances in genomic analysis. For DNA in 100 nm channels, we observe a critical length scale 10 m for the mean extension of internal segments, below which the de Gennes' theory describes the fluctuations with no fitting parameters, and above which the fluctuation data falls into Odijk's deflection theory regime. By analyzing the probability distributions of the extensions of the internal segments, we infer that folded structures of length 150250 nm, separated by 10 m exist in the confined DNA during the transition between the two regimes. For 50 nm channels we find that the fluctuation is significantly reduced since the Odijk regime appears earlier. This is critical for genomic analysis. We further propose a more detailed theory based on small fluctuations and incorporating the effects of confinement to explicitly calculate the statistical properties of the internal fluctuations. Our theory is applicable to polymers with heterogeneous mechanical properties confined in non-uniform channels. We show that existing theories for the end-to-end extension/fluctuation of polymers can be used to study the internal fluctuations only when the contour length of the polymer is many times larger than its persistence length. Finally, our results suggest that introducing nicks in the DNA will not change its fluctuation behavior when the nick density is below 1 nick per kbp DNA.
HighlightThe roles of GmCIF1 and GmC/VIF1 as invertase inhibitors were examined in vitro in soybean (Glycine max), and post-translational elevation of extracellular invertase activity by silencing GmCIF1 expression was found to increase seed weight.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.