Time complexity in rewriting is naturally understood as the number of steps needed to reduce terms to normal forms. Establishing complexity bounds to this measure is a well-known problem in the rewriting community. A vast majority of techniques to find such bounds consist of modifying termination proofs in order to recover complexity information. This has been done for instance with semantic interpretations, recursive path orders, and dependency pairs. In this paper, we follow the same program by tailoring tuple interpretations to deal with innermost complexity analysis. A tuple interpretation interprets terms as tuples holding upper bounds to the cost of reduction and size of normal forms. In contrast with the full rewriting setting, the strongly monotonic requirement for cost components is dropped when reductions are innermost. This weakened requirement on cost tuples allows us to prove the innermost version of the compatibility result: if all rules in a term rewriting system can be strictly oriented, then the innermost rewrite relation is well-founded. We establish the necessary conditions for which tuple interpretations guarantee polynomial bounds to the runtime of compatible systems and describe a search procedure for such interpretations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.