In many countries, the Internet of Medical Things (IoMT) has been deployed in tandem with other strategies to curb the spread of COVID-19, improve the safety of front-line personnel, increase efficacy by lessening the severity of the disease on human lives, and decrease mortality rates. Significant inroads have been achieved in terms of applications and technology, as well as security which have also been magnified through the rapid and widespread adoption of IoMT across the globe. A number of on-going researches show the adoption of secure IoMT applications is possible by incorporating security measures with the technology. Furthermore, the development of new IoMT technologies merge with Artificial Intelligence, Big Data and Blockchain offers more viable solutions. Hence, this paper highlights the IoMT architecture, applications, technologies, and security developments that have been made with respect to IoMT in combating COVID-19. Additionally, this paper provides useful insights into specific IoMT architecture models, emerging IoMT applications, IoMT security measurements, and technology direction that apply to many IoMT systems within the medical environment to combat COVID-19.
Water pipeline leakage detection is still an important issue, particularly for the development of smart cities. Thus, this paper reviews water pipeline leakage detection techniques, which can be classified into three different categories, namely, software-based, hardware-based, and conventional methods. We compare the advantages and disadvantages for all the methods in the groups and thoroughly discuss the hardware-based method, which is our focus. Specifications on water pipeline testbeds used in the previous works are also highlighted. Since many recent techniques are based on accelerometer or vibration sensors, a comparative study that includes the cost and accuracy in identifying the pipeline leaks is presented. The theoretical computation of the vibration induced from our water pipeline testbed is also demonstrated and compared with the actual vibration data collected from the experimental works using three different sensors, namely, MPU6050, MMA7361, and ADXL335. INDEX TERMS Water pipeline, pipeline leakage, vibration leak detection, accelerometer, pipeline test bed.
Background The Internet of Medical Things (IoMTs) is gradually replacing the traditional healthcare system. However, little attention has been paid to their security requirements in the development of the IoMT devices and systems. One of the main reasons can be the difficulty of tuning conventional security solutions to the IoMT system. Machine Learning (ML) has been successfully employed in the attack detection and mitigation process. Advanced ML technique can also be a promising approach to address the existing and anticipated IoMT security and privacy issues. However, because of the existing challenges of IoMT system, it is imperative to know how these techniques can be effectively utilized to meet the security and privacy requirements without affecting the IoMT systems quality, services, and device’s lifespan. Methodology This article is devoted to perform a Systematic Literature Review (SLR) on the security and privacy issues of IoMT and their solutions by ML techniques. The recent research papers disseminated between 2010 and 2020 are selected from multiple databases and a standardized SLR method is conducted. A total of 153 papers were reviewed and a critical analysis was conducted on the selected papers. Furthermore, this review study attempts to highlight the limitation of the current methods and aims to find possible solutions to them. Thus, a detailed analysis was carried out on the selected papers through focusing on their methods, advantages, limitations, the utilized tools, and data. Results It was observed that ML techniques have been significantly deployed for device and network layer security. Most of the current studies improved traditional metrics while ignored performance complexity metrics in their evaluations. Their studies environments and utilized data barely represent IoMT system. Therefore, conventional ML techniques may fail if metrics such as resource complexity and power usage are not considered.
The processes of intelligent data processing in computer vision systems have been researched. The problem of structural image recognition is relevant. This is a promising way to assess the degree of similarity of objects. This approach provides the simplicity of construction and the high reliability of decision making. The main problem of an effective description of characteristic features is the distortion of fragments of analyzed objects. The reasons for changing the input data can be the actions of geometric transformations, the influence of background or interference. The elements of false objects with similar characteristics are formed. The problem of ensuring high-quality recognition requires the implementation of effective means of image processing. Methods of statistical modeling, granulation of data and fuzzy sets, detection and comparison of keypoints on the image, classification and clustering of data, and simulation modelling are used in this research. The implementation of the proposed approaches provides the formation of a concise description of features or a vector representation of unique keypoints. The verification of theoretical foundations and evaluation of the effectiveness of the proposed data processing methods for real image bases is performed using the OpenCV library. The applied significance of the work is substantiated according to the criterion of data processing time without reducing the characteristics of reliability and interference immunity. The developed methods allow to increase the structural recognition of images by several times. Perspectives of research may involve identifying the optimal number of keypoints of the base set.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.