Colorful bioassays: Time‐ and color‐resolved detection of Förster resonance energy transfer (FRET) from luminescent terbium complexes to different semiconductor quantum dots results in a fivefold multiplexed bioassay with sub‐picomolar detection limits for all five bioanalytes (see picture). The detection of up to five biomarkers occurs with a sensitivity that is 40–‐240‐fold higher than one of the best‐established single‐analyte reference assays.
The synthesis of a new ligand LH(4) based on a glutamic acid skeleton bis-functionalized on its nitrogen atom by 6-methylene-6'-carboxy-2,2'-bipyridine chromophoric units is described. UV-vis spectrophotometric titrations revealed the formation of 1:1 M:L complexes with lanthanide(III) cations, and complexation of LH(4) with equimolar amounts of hydrated LnCl(3) salts (Ln = Eu, Gd, and Tb) gave water-soluble and stable complexes of the general formula [LnL(H(2)O)]Na, which were characterized by elemental analysis, IR, UV-vis absorption spectroscopy, (1)H NMR (Ln = Eu), and mass spectrometry. The conditional stability constant for formation of the [EuL(H(2)O)]Na complex was determined by competitive complexation experiments to be log K = 16.5 +/- 0.6 in 0.01 M TRIS/HCl buffer (pH = 7.0). In water solution, the [EuL(H(2)O)]Na and [TbL(H(2)O)]Na complexes were highly luminescent with quantum yields of 8% and 31%, respectively, despite the presence of ca. one water molecule in the first coordination sphere of the metal ions. Activation of the appended carboxylate function of the glutamate moiety in the form of an N-hydroxysuccinimidyl ester allows for the covalent linking of the complexes to primary amino groups of biological compounds. Bovine serum albumin (BSA) was labeled with both Eu or Tb complexes, and the Ln-BSA conjugates were characterized by UV-vis absorption and emission spectroscopy and MALDI-TOF mass spectrometry. Labeling ratios (number of complex molecules per BSA) of ca. 8:1 and 7:1 were established for Eu-BSA and Tb-BSA, respectively. The suitability of the tagged compound for use in bioanalytical time-resolved luminescence microscopy was established by comparison with fluorescein-labeled probes.
A time-resolved fluoro-immunoassay (TR-FIA) format is presented based on resonance energy transfer from visible emitting lanthanide complexes of europium and terbium, as energy donors, to semiconductor CdSe/ZnS core/shell nanocrystals (quantum dots, QD), as energy acceptors. The spatial proximity of the donor-acceptor pairs is obtained through the biological recognition process of biotin, coated at the surface of the dots (Biot-QD), and streptavidin labeled with the lanthanide markers (Ln-strep). The energy transfer phenomenon is evident from simultaneous lanthanide emission quenching and QD emission sensitization with a 1000-fold increase of the QD luminescence decay time reaching the hundred mus regime. Delayed emission detection allows for quantification of the recognition process and demonstrated a nearly quantitative association of the biotins to streptavidin with sensitivity limits reaching 1.2 pM of QD. Spectral characterization permits calculation of the energy transfer parameters. Extremely large Förster radii (R(0)) values were obtained for Tb (104 A) and Eu (96 A) as a result of the relevant spectral overlap of donor emission and acceptor absorption. Special attention was paid to interactions with the varying constituents of the buffer for sensitivity and transfer efficiency optimization. The energy transfer phenomenon was also monitored by time-resolved luminescence microscopy experiments. At elevated concentration (>10(-)(5) M), Tb-strep precipitated in the form of pellets with long-lived green luminescence, whereas addition of Biot-QD led to red emitting pellets, with long excited-state decay times. The Ln-QD donor-acceptor hybrids appear as highly sensitive analytical tools both for TR-FIA and time-resolved luminescence microscopy experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.