Fusarium head blight (FHB) is one of the most devastating diseases of wheat (Triticum aestivum), barley (Hordeum vulgare) and other small grain cereals grown in warm and humid regions worldwide. In addition to yield loss, the disease compromises the quality of infected grain as a result of contamination with a range of Fusarium mycotoxins that are harmful to human and animal health. Deoxynivalenol (DON) is the most prevalent trichothecene mycotoxin found in Fusarium-infected grains. DON acts as a virulence factor for Fusarium, facilitating disease spread within wheat heads. Resistance to DON is an innate component of FHB resistance. Here we review FHB as a globally important disease, with a specific focus on the role of DON in disease development, the importance of its' resistance in plant defence against Fusarium and the current knowledge regarding the genes activated as part of the cereal defence against the toxin.
BackgroundBrassinosteroid hormones regulate many aspects of plant growth and development. The membrane receptor BRI1 is a central player in the brassinosteroid signaling cascade. Semi-dwarf ‘uzu’ barley carries a mutation in a conserved domain of the kinase tail of BRI1 and this mutant allele is recognised for its positive contribution to both yield and lodging resistance.ResultsHere we show that uzu barley exhibits enhanced resistance to a range of pathogens. It was due to a combination of preformed, inducible and constitutive defence responses, as determined by a combination of transcriptomic and biochemical studies. Gene expression studies were used to determine that the uzu derivatives are attenuated in downstream brassinosteroid signaling. The reduction of BRI1 RNA levels via virus-induced gene silencing compromised uzu disease resistance.ConclusionsThe pathogen resistance of uzu derivatives may be due to pleiotropic effects of BRI1 or the cascade effects of their repressed BR signaling.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-014-0227-1) contains supplementary material, which is available to authorized users.
The mycotoxin deoxynivalenol (DON) serves as a plant disease virulence factor for the fungi Fusarium graminearum and F. culmorum during the development of Fusarium head blight (FHB) disease on wheat. A wheat cytochrome P450 gene from the subfamily CYP72A, TaCYP72A, was cloned from wheat cultivar CM82036. TaCYP72A was located on chromosome 3A with homeologs present on 3B and 3D of the wheat genome. Using gene expression studies, we showed that TaCYP72A variants were activated in wheat spikelets as an early response to F. graminearum, and this activation was in response to the mycotoxic Fusarium virulence factor deoxynivalenol (DON). Virus induced gene silencing (VIGS) studies in wheat heads revealed that this gene family contributes to DON resistance. VIGS resulted in more DON-induced discoloration of spikelets, as compared to mock VIGS treatment. In addition to positively affecting DON resistance, TaCYP72A also had a positive effect on grain number. VIGS of TaCYP72A genes reduced grain number by more than 59%. Thus, we provide evidence that TaCYP72A contributes to host resistance to DON and conclude that this gene family warrants further assessment as positive contributors to both biotic stress resistance and grain development in wheat.
Receptor-like kinases form the largest family of receptors in plants and play an important role in recognizing pathogen-associated molecular patterns and modulating the plant immune responses to invasive fungi, including cereal defenses against fungal diseases. But hitherto, none have been shown to modulate the wheat response to the economically important Fusarium head blight (FHB) disease of small-grain cereals. Homologous genes were identified on barley chromosome 6H (HvLRRK-6H) and wheat chromosome 6DL (TaLRRK-6D), which encode the characteristic domains of surface-localized receptor like kinases. Gene expression studies validated that the wheat TaLRRK-6D is highly induced in heads as an early response to both the causal pathogen of FHB disease, Fusarium graminearum, and its’ mycotoxic virulence factor deoxynivalenol. The transcription of other wheat homeologs of this gene, located on chromosomes 6A and 6B, was also up-regulated in response to F. graminearum. Virus-induced gene silencing (VIGS) of the barley HvLRRK-6H compromised leaf defense against F. graminearum. VIGS of TaLRRK-6D in two wheat cultivars, CM82036 (resistant to FHB disease) and cv. Remus (susceptible to FHB), confirmed that TaLRRK-6D contributes to basal resistance to FHB disease in both genotypes. Although the effect of VIGS did not generally reduce grain losses due to FHB, this experiment did reveal that TaLRRK-6D positively contributes to grain development. Further gene expression studies in wheat cv. Remus indicated that VIGS of TaLRRK-6D suppressed the expression of genes involved in salicylic acid signaling, which is a key hormonal pathway involved in defense. Thus, this study provides the first evidence of receptor like kinases as an important component of cereal defense against Fusarium and highlights this gene as a target for enhancing cereal resistance to FHB disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.