Scientometric reviews, facilitated by computational and visual analytical approaches, allow researchers to gain a thorough understanding of research trends and areas of concentration from a large number of publications. With the fast development of satellite altimetry, which has been effectively applied to a wide range of research topics, it is timely to summarize the scientific achievements of the previous 50 years and identify future trends in this field. A comprehensive overview of satellite altimetry was presented using a total of 8541 publications from the Web of Science Core Collection covering the years from 1970 to 2021. We begin by presenting the fundamental statistical results of the publications, such as the annual number of papers, study categories, countries/regions, afflictions, journals, authors, and keywords, in order to provide a comprehensive picture of satellite altimetry research. We discuss the co-occurrence of the authors in order to reveal the global collaboration network of satellite altimetry research. Finally, we utilised co-citation networks to detect the development trend and associated crucial publications for various specific topics. The findings show that satellite altimetry research has been changed immensely during the last half-century. The United States, France, China, England, and Germany made the most significant contributions in the field of satellite altimetry. The analysis reveals a clear link between technology advancements and the trend in satellite altimetry research. As a result, wide swath altimetry, GNSS-reflectometry, laser altimetry, terrestrial hydrology, and deep learning are among the most frontier study subjects. The findings of this work could guide a thorough understanding of satellite altimetry’s overall development and research front.
In the Bering Sea slope, ocean eddies are essential physical processes that carry nutrients to the shelf. The development of the satellite altimeter has facilitated the observation of oceanic eddies. Attention networks are used as the core algorithm for eddy detection to suppress feature responses in irrelevant non-eddy areas, which can address the issue of sample imbalance in high-latitude ocean eddies. Furthermore, data from both the sea surface height (SSH) and geostrophic velocity were employed as model inputs to integrate more eddy-related properties. The results of ocean eddy detection using this method and the dataset allowed more eddies to be detected than with traditional vector geometry-based methods and only SSH-based models. This study also incorporated the results of multiple deep learning models to increase both the overall and single-day eddy detection efficiency. As a result, the algorithms in this paper show that attention networks and geostrophic velocity data are both appropriate for high-latitude ocean eddy identification. This makes a contribution to the further application of deep learning methods to satellite altimetry data.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.