With the emergence and popularity of iris biometrics, there are increasing concerns regarding the feasibility of iris authentication systems and their corresponding variability reduction methods. The former issues are typically addressed by optimizing key factors, such as iris size, image quality and acquisition wavelength. As for the latter, introducing error correction codes to reduce intra-user variability in the enrolled identifiers becomes novelly promising. This paper proposes a conventional iris authentication system and a hardware-friendly QC-LDPC error correction code scheme on a microprocessor-FPGA platform. Different QC-LDPC codes in IEEE 802.16e were analyzed and selected. Suitable codes were applied, followed by the evaluation experiments. The proposed design achieves a competitive result with up to 0.20% EER and 0.50% ZeroFAR on the CASIA-IrisV4-Syn database. Cryptographic keys with lengths of up to 288 bits can also be generated and recovered. Such a device can be potentially used for applications such as an access control system in high-security areas, identity verification at the borders, biometric cryptography and related authentication scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.