The effect of alkali pre-treatment (sodium hydroxide, NaOH) on the microstructural, mechanical, and chemical composition of oil palm stalk fibres (OPSF) is reported for future bioconversion processes. The OPSF was pre-treated with various concentrations of NaOH (5, 10, 20, 30, and 40% w/v). Scanning electron microscopy analysis revealed that 5% w/v alkali concentration caused complete removal of silica bodies and waxy layers, whereas pronounced degradation of the fibres occurred at 40% w/v NaOH concentration. Mechanical test results showed that the maximum elastic modulus of untreated OPSF was 2.5 GPa and the modulus was not sensitive to alkali concentration. Permanent set (plastic strain) and viscoelastic behaviours of OPSF were observed from the loading-unloading and stress relaxation test results, respectively. Agreement was observed between the Prony series viscoelastic model and test results, which provided further evidence of the viscoelastic behaviour of OPSF.
This work investigates the non-linear mechanical behavior of oil palm mesocarp fibers (OPMF) using tensile tests, microstructure observation, and finite element models. The micrograph images showed the fiber's surface with partly embedded silica bodies, while the cross section contained cell wall structures. Viscoelastic behavior was observed when the fibers were relaxed over time after being stretched, whereas the stress-strain curves from the cyclic tests indicated permanent set (plastic strain) due to the fibers' deformation. Finite element models were developed comprising single particles (2D and 3D) and 2D multiparticle geometries representing silica bodies embedded in a matrix representing the fiber. The modeling results suggested that silica bodies do not contribute much to the integrity of OPMF, highlighting the need to have a more complex model that considers cellular structures of the fibers and a constitutive relationship of cellulose, hemicelluloses, and lignin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.