Accumulation of baculovirus defective interfering particle (DIP) and few polyhedra (FP) mutants is a major limitation to continuous large-scale baculovirus production in insect-cell culture. Although overcoming these mutations would result in a cheaper platform for producing baculovirus biopesticides, little is known regarding the mechanism of FP and DIP formation. This issue was addressed by comparing DIP production of wild-type (WT) Autographa californica multiple nucleopolyhedrovirus (AcMNPV) with that of a recombinant AcMNPV (denoted Ac-FPm) containing a modified fp25k gene with altered transposon insertion sites that prevented transposon-mediated production of the FP phenotype. In addition to a reduction in the incidence of the FP phenotype, DIP formation was delayed on passaging of Ac-FPm compared with WT AcMNPV. Specifically, the yield of DIP DNA in Ac-FPm was significantly lower than in WT AcMNPV up to passage 16, thereby demonstrating that modifying the transposon insertion sites increases the genomic stability of AcMNPV. A critical component of this investigation was the optimization of a systematic method based on the use of pulsed-field gel electrophoresis (PFGE) to characterize extracellular virus DNA. Specifically, PFGE was used to detect defective genomes, determine defective genome sizes and quantify the amount of defective genome within a heterogeneous genome population of passaged virus.
The baculovirus expression vector system (BEVS) is an emerging tool for the production of recombinant proteins, vaccines and bio-pesticides. However, a system-level understanding of the complex infection process is important in realizing large-scale production at a lower cost. The entire baculovirus infection process is summarized as a combination of various modules and the existing mathematical models are discussed in light of these modules. This covers a systematic review of the present understanding of virus internalization, viral DNA replication, protein expression, budded virus (BV) and occlusion-derived virus (ODV) formation, few polyhedral (FP) and defective interfering particle (DIP) mutant formation, cell cycle modification and apoptosis during the viral infection process. The corresponding theoretical models are also included. Current knowledge regarding the molecular biology of the baculovirus/insect cell system is integrated with population balance and mass action kinetics models. Furthermore, the key steps for simulating cell and virus densities and their underlying features are discussed. This review may facilitate the further development and refinement of mathematical models, thereby providing the basis for enhanced control and optimization of bioreactor operation.
Low-cost, large-scale production of the baculovirus Autographa californica multiple nucleopolyhedrovirus (AcMNPV) using continuous insect cell culture is seriously hindered by the accumulation of AcMNPV mutants. Specifically, few-polyhedra (FP) mutants, with a reduced yield of occluded virus (polyhedra) and decreased infectivity, usually accumulate upon passaging in cell culture. FP mutations result from transposon insertions in the baculovirus fp25k gene, leading to significantly reduced levels of FP25K protein synthesis. This study evaluated the effects of removing the transposon insertion sites from the wild-type baculovirus fp25k gene; the mutated virus was denoted Ac-FPm. Specifically, this study involved a detailed comparison of wild-type (WT) AcMNPV and Ac-FPm with regard to the proportion of cells having polyhedra, number of polyhedra per cell, the fraction of empty polyhedra, number of occlusion-derived viruses per polyhedron, number of nucleocapsids in the nuclei, FP25K protein synthesis and genetic analysis of the fp25k gene. Removal of TTAA transposon insertion sites from the fp25k gene stabilized FP25K protein synthesis and delayed the appearance of the FP phenotype from passage 5 to passage 10. Electron micrographs revealed that more virus particles were found inside the nuclei of cells infected with Ac-FPm than in the nuclei of cells infected with WT AcMNPV (at passage 10). Abnormalities, however, were observed in envelopment of nucleocapsids and virus particle occlusion within Ac-FPm polyhedra. Thus, the FP phenotype appeared in spite of continued FP25K protein synthesis, suggesting that mechanisms other than fp25k gene disruption can lead to the FP phenotype.
Glaucoma is one of the leading causes of loss of vision. The problems associated with the marketed formulations of anti-glaucoma drugs are low bioavailability, unwanted side effects, and low patient compliance. Hydrogels are an important class of soft materials that play a crucial role in developing an ocular drug delivery system. They assume a special significance in addressing the problems associated with the marketed formulations of eyedrops. An appropriate design of the hydrogel system capable of encapsulating single or multiple drugs for glaucoma has emerged in recent times to overcome such challenges. Although various modes of imaging play critical roles in assessing the efficacy of these formulations, evaluating hydrogels for drug permeation and retention remains challenging. Especially, the assessment of dual drugs in the hydrogel system is not straightforward due to the complexity in measuring drug penetration and retention for in vivo or ex vivo systems. There is a need to develop tools for the fabrication and validation of hydrogel-based systems that give insight into precorneal retention, biocompatibility, cellular uptake, and cell permeation. The current review highlights some of the complexities in formulating hydrogel and benchmarking technologies, including confocal laser scanning microscopy, fluorescent microscopy, slit-lamp biomicroscopy, and camera-based imaging. This review also summarizes recent evaluations of various hydrogel formulations using in vitro and in vivo models. Further the article will help researchers from various disciplines, including formulation scientists and biologists, set up preclinical protocols for evaluating polymeric hydrogels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.