Large rainfall-induced landslides are among the most dangerous natural hazards in Taiwan, posing a risk for people and infrastructure. Thus, better knowledge about the evolution of landslides and their impact on the downstream area is of high importance for disaster mitigation. The aim of this study is twofold: (1) to semi-automatically map the evolution of the Butangbunasi landslide in south-central Taiwan using satellite remote sensing data, and (2) to investigate the potential correlation between changes in landslide area and heavy rainfall during typhoon events. Landslide area, as well as temporary landslide-dammed lakes, were semi-automatically identified using object-based image analysis (OBIA), based on 20 Landsat images from 1984 to 2018. Hourly rainfall data from the Taiwan Central Weather Bureau (CWB) was complemented with rainfall data from Climate Hazards Group Infrared Precipitation with Station data (CHIRPS) to examine the potential relationship between landslide area changes and rainfall as a triggering factor. The OBIA mapping results revealed that the most significant landslide extension happened after typhoon Morakot in 2009. We found a moderate positive relationship between the landslide area change and the duration of the heavy rainfall event, whereas daily precipitation, cumulative rainfall and mean intensity did not present strong significant correlations.
Landslide mapping and analysis are essential aspects of hazard and risk analysis. Landslides can block rivers and create landslide-dammed lakes, which pose a significant risk for downstream areas. In this research, we used an object-based image analysis approach to map geomorphological features and related changes and assess the applicability of Sentinel-1 data for the fast creation of post-event digital elevation models (DEMs) for landslide volume estimation. We investigated the Hítardalur landslide, which occurred on the 7 July 2018 in western Iceland, along with the geomorphological changes induced by this landslide, using optical and synthetic aperture radar data from Sentinel-2 and Sentinel-1. The results show that there were no considerable changes in the landslide area between 2018 and 2019. However, the landslide-dammed lake area shrunk between 2018 and 2019. Moreover, the Hítará river diverted its course as a result of the landslide. The DEMs, generated by ascending and descending flight directions and three orbits, and the subsequent volume estimation revealed that—without further post-processing—the results need to be interpreted with care since several factors influence the DEM generation from Sentinel-1 imagery.
Abstract. Controls on landsliding have long been studied, but the potential for landslide-induced dam and lake formation has received less attention. Here, we model possible landslides and the formation of landslide dams and lakes in the Austrian Alps. We combine a slope criterion with a probabilistic approach to determine landslide release areas and volumes. We then simulate the progression and deposition of the landslides with a fluid dynamic model. We characterize the resulting landslide deposits with commonly used metrics, investigate their relation to glacial land-forming and tectonic units, and discuss the roles of the drainage system and valley shape.
We discover that modeled landslide dams and lakes cover a wide volume range. In line with real-world inventories, we further found that lake volume increases linearly with landslide volume in the case of efficient damming – when an exceptionally large lake is dammed by a relatively small landslide deposit. The distribution and size of potential landslide dams and lakes depends strongly on local topographic relief. For a given landslide volume, lake size depends on drainage area and valley geometry. The largest lakes form in glacial troughs, while the most efficient damming occurs where landslides block a gorge downstream of a wide valley, a situation preferentially encountered at the transition between two different tectonic units. Our results also contain inefficient damming events, a damming type that exhibits different scaling of landslide and lake metrics than efficient damming and is hardly reported in inventories. We assume that such events also occur in the real world and emphasize that their documentation is needed to better understand the effects of landsliding on the drainage system.
Stimulating non-motorized transport has been a key point on sustainable mobility agendas for cities around the world. Lisbon is no exception, as it invests in the implementation of new bike infrastructure. Quantifying the connectivity of such a bicycle network can help evaluate its current state and highlight specific challenges that should be addressed. Therefore, the aim of this study is to develop an exploratory score that allows a quantification of the bicycle network connectivity in Lisbon based on open data. For each part of the city, a score was computed based on how many common destinations (e.g., schools, universities, supermarkets, hospitals) were located within an acceptable biking distance when using only bicycle lanes and roads with low traffic stress for cyclists. Taking a weighted average of these scores resulted in an overall score for the city of Lisbon of only 8.6 out of 100 points. This shows, at a glance, that the city still has a long way to go before achieving their objectives regarding bicycle use in the city.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.