Understanding urban tree responses to drought, salt stress, and co-occurring stresses, as well as the capability to recover afterward, is important to prevent the cited stresses’ negative effects on tree performance and ecological functionality. We investigated the impact of drought and salinity, alone and in combination, on leaf water potential, gas exchange, chlorophyll a fluorescence, xanthophyll cycle pigments, and isoprene emission of the urban tree species Liquidambar styraciflua L. Generally, drought had a rapid negative impact, while the effect of salt stress was more long lasting. Both stressors significantly decreased photosynthesis, transpiration, and stomatal conductance, as well as the maximum quantum efficiency of photosystem II (Fv/Fm) and the photochemical efficiency of PSII (ΦPSII), but increased nonphotochemical quenching (NPQ). Under stress conditions, a strong negative correlation between the PSII efficiency and the xanthophyll cycle pigment composition indicated a nocturnal retention of zeaxanthin and antheraxanthin in a state primed for energy dissipation. Drought and salt stress inhibited isoprene emission from leaves, although its emission was less responsive to stresses than stomatal conductance and photosynthesis. Full recovery of photosynthetic parameters took place after rewatering and washing off of excess salt, indicating that no permanent damage occurred, and suggesting downregulation rather than permanent impairment of the photosynthetic apparatus. Sweetgum trees were capable of withstanding and surviving moderate drought and salt events by activating defense mechanisms conferring tolerance to environmental stresses, without increasing the emission in the atmosphere of the highly reactive isoprene.
Vegetables represent a major source of Ni exposure. Environmental contamination and cultural practices can increase Ni amount in tomato posing significant risk for human health. This work assesses the tomato (Solanum lycopersicum L.) response to Ni on the agronomic yield of fruits and the related production of allergens.Two cultivars were grown in pots amended with Ni 0, 30, 60, 120, and 300 mg kg-1, respectively. XRF and ICP-MS analyses highlighted the direct increase of fruit Ni content respect to soil Ni, maintaining a stable biomass. Leaf water content increased at Ni 300 mg kg-1. Total protein content and individual allergenic components were investigated using biochemical (RP-HPLC and N-terminal amino acid sequencing) and immunological (inhibition tests of IgE binding by SPHIAa assay on the FABER® testing system) methodologies. Ni affected the fruit tissue concentration of pathogenesis-related proteins and relevant allergens (LTP, profilin, Bet v 1-like protein and TLP). This study elucidates for the first time that tomato reacts to exogenous Ni uptaking metal while changing its allergenic profiles, with potential double increasing of exposure risks for consumers. This evidence highlighted the importance of adequate choice of low-Ni tomato cultivars and practices to avoid Ni uptake by potentially contaminated matrices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.